若函数f(x)=x2+2(a-1)x+2在区间(-∞,4]上是减函数,那么实数a的取值范围是( )
A.a≥3 | B.a≤-3 | C.a≤5 | D.a≥ -3 |
已知二次函数y=ax2+bx+c的图象的顶点坐标为(2,-1),与y轴的交点坐标为(0,11),则( )
A.a="1,b=" -4,c=" -11" | B.a="3,b=12,c=11" |
C.a="3,b=" -6,c="11" | D.a="3,b=" -12,c=11 |
已知二次函数, 满足且的最小值是.
(1) 求的解析式;
(2) 设直线,若直线与的图象以及轴所围成封闭图形的面积是, 直线与的图象所围成封闭图形的面积是,设,当取最小值时,求的值.
(3)已知, 求证: .
(本小题满分12分)已知二次函数f(x)=ax2+bx+c和一次函数g(x)=-bx,其中a、b、c满足a>b>c,a+b+c=0,(a,b,c∈R)
(1)求证:函数图象交于不同的两点;
(2)设(1)问中交点为,求线段AB在x轴上的射影A1B1的长的取值范围。
试题篮
()