(12分)在△ABC中,角A、B、C所对的边分别为a、b、c,且b2+c2=a2+bc.
(1)求角A的大小;
(2)若sin B·sin C=sin2A,试判断△ABC的形状.
((本小题满分12分)
炮兵阵地位于地面处,两观察所分别位于地面点和处,已知, ,, 目标出现于地面点处时,测得, (如答题卷图所示).求:炮兵阵地到目标的距离.
港口北偏东方向的处有一检查站,港口正东方向的处有一轮船,距离检查站为31海里,该轮船从处沿正西方向航行20海里后到达处观测站,已知观测站与检查站距离21海里,问此时轮船离港口还有多远?
|
|
|
|
(10分) 如图所示,已知、两点的距离为海里,在的北偏东处,甲船自以海里/小时的速度向航行,同时乙船自以海里/小时的速度沿方位角方向航行。问航行几小时两船之间的距离最短?
在中,角的对边分别为,且.
(1)求角的大小;
(2)若,求的面积.
如图,△ACD是等边三角形,△ABC是等腰直角
三角形,∠ACB=90°,BD交AC于E,AB=2.
(1)求cos∠CBE的值;(2)求AE。
如图,当甲船位于A处时获悉,在其正东方向相距20海里的B处有一艘渔船遇险等待营救.甲船立即前往救援,同时把消息告知在甲船的南偏西30,相距10海里C处的乙船,试问乙船应朝北偏东多少度的方向沿直线前往B处救援?(可能用到的数据,)
试题篮
()