优题课 - 聚名师,上好课(www.youtike.com)
  首页 / 试题库 / 高中数学试题 / 三面角、直三面角的基本性质
高中数学

某工厂生产一种仪器的元件,由于受生产能力和技术水平的限制,会产生一些次品,根据经验知道,其次品率P与日产量x(万件)之间大体满足关系:(其中c为小于6的正常数).  (注:次品率=次品数/生产量,如P=0.1表示每生产10件产品,有1件为次品,其余为合格品),已知每生产1万件合格的元件可以盈利2万元,但每生产出1万件次品将亏损1万元,故厂方希望定出合适的日产量.
(1)试将生产这种仪器的元件每天的盈利额T(万元)表示为日产量x(万件)的函数;
(2)当日产量为多少时,可获得最大利润?

  • 题型:未知
  • 难度:未知

定义运算,函数图像的顶点是,且成等差数列,则    (    )

A.0 B.-14 C.-9 D.-3
  • 题型:未知
  • 难度:未知

养路处建造无底的圆锥形仓库用于贮藏食盐(供融化高速公路上的积雪之用),已建的仓库的底面直径为12米,高4米。养路处拟另建一个更大的圆锥形仓库,以存放更多食盐。现有两种方案:一是新建的仓库的底面直径比原来增加4米(高不变);二是高度增加4米(底面直径不变)。
分别计算按这两种方案所建的仓库的体积;
分别计算按这两种方案所建的仓库的表面积;
哪个方案更经济些?

  • 题型:未知
  • 难度:未知

已知函数
(Ⅰ)当时, 求函数的单调增区间;
(Ⅱ)求函数在区间上的最小值;
(Ⅲ) 在(Ⅰ)的条件下,设,
证明:.参考数据:

  • 题型:未知
  • 难度:未知

已知函数
⑴解不等式
⑵若不等式的解集为空集,求的取值范围.

  • 题型:未知
  • 难度:未知

比较大小:        (填“>”或“<”).

  • 题型:未知
  • 难度:未知

,若对任意恒成立,则a的取值范围是________

  • 题型:未知
  • 难度:未知

若定义在R上的函数f(x)满足,且<0a="f" (),b="f" (),c="f" (),则a,b,c的大小关系为

A.a>b>c B.c>b>a C.b>a>c D.c>a>b
  • 题型:未知
  • 难度:未知

某造船公司年造船量是20艘,已知造船x艘的产值函数为R(x)=3700x+45x2-10x3(单位:万元),成本函数为C(x)=460x+5000(单位:万元),又在经济学中,函数f(x)的边际函数Mf(x)定义为Mf(x)=f(x+1)-f(x).
(1)求利润函数P(x)及边际利润函数MP(x);(提示:利润=产值-成本)
(2)问年造船量安排多少艘时,可使公司造船的年利润最大?

  • 题型:未知
  • 难度:未知

已知函数
(Ⅰ)解不等式:
(Ⅱ)若,求证:.

  • 题型:未知
  • 难度:未知

已知偶函数上是增函数,则不等式的解集是          .

  • 题型:未知
  • 难度:未知

已知函数
(1)若不等式的解集为,求的取值范围;
(2)解关于的不等式
(3)若不等式对一切恒成立,求的取值范围.

  • 题型:未知
  • 难度:未知

已知函数上的奇函数,且的图象关于直线x=1对称,当时,      

  • 题型:未知
  • 难度:未知

若动直线与函数的图像分别交于两点,则的最大值为         

  • 题型:未知
  • 难度:未知

已知函数是定义在上的奇函数,若对于任意给定的不等实数,不等式恒成立,则不等式的解集为          .

  • 题型:未知
  • 难度:未知

高中数学三面角、直三面角的基本性质试题