正方形的边长为2,点、分别在边、上,且,,将此正
方形沿、折起,使点、重合于点,则三棱锥的体积是( )
A. | B. | C. | D. |
三棱锥的四个顶点都在球面上,SA是球的直径,,,则该球的表面积为( )
A. | B. | C. | D. |
设△ABC的三边长分别为a、b、c,△ABC的面积为S,内切圆半径为r,则r=;类比这个结论可知:四面体S-ABC的四个面的面积分别为S1、S2、S3、S4,内切球的半径为r,四面体S-ABC的体积为V,则r=( )
A. | B. | C. | D. |
如图,等边三角形的中线与中位线相交于,已知是△绕旋转过程中的一个图形,下列命题中,错误的是( )
A.动点在平面上的射影在线段上 |
B.恒有平面⊥平面 |
C.三棱锥的体积有最大值 |
D.异面直线与不可能垂直 |
新课标理)如图,有一个水平放置的透明无盖的正方体容器,容器高8cm,将一个球放在容器口,再向容器内注水,当球面恰好接触水面时测得水深为6cm,如果不计容器的厚度,则球的体积为( )
A.cm3 | B.cm3 | C.cm3 | D.cm3 |
如图所示,四边形ABCD为正方形,QA⊥平面ABCD,PD∥QA,QA=AB=PD.则棱锥Q-ABCD的体积与棱锥P-DCQ的体积的比值是( )
A. 2:1
B. 1:1
C. 1:2
D. 1:3
已知矩形ABCD的面积为8,当矩形ABCD周长最小时,沿对角线AC把
△ACD折起,则三棱锥D-ABC外接的球表面积等于( ).
A.8π | B.16π | C.48π | D.不确定的实数 |
若正方体的外接球的体积为,则球心到正方体的一个面的距离为( )
A.1 | B.2 | C.3 | D.4 |
正方形的边长为2,点、分别在边、上,且,,将此正方形沿、折起,使点、重合于点,则三棱锥的体积是
A. | B. | C. | D. |
一个正三棱锥的四个顶点都在半径为1的球面上,其中底面的三个顶点在该球的一个大圆上,则该正三棱锥的体积是()
A. | B. | C. | D. |
试题篮
()