(本小题满分14分)已知函数;
(1)若,求的值域;(2)在(1)的条件下,判断的单调性;(3)当时有意义求实的范围。
(本小题满分12分)函数的一系列对应值如下表:
。。。 |
0 |
。。。 |
|||||||
。。。 |
0 |
1 |
0 |
—1 |
0 |
。。。 |
(1)根据表中数据求出的解析式;
(2)指出函数的图象是由函数的图象经过怎样的变化而得到的;
(3)令,若在时有两个零点,求的取值范围。
(本小题满分12分)在矩形ABCD中,;(1)求的值和点C的坐标?
(2)求与夹角的余弦值;
(本小题满分12分)
设M是由满足下列条件的函数构成的集合:“①方程有实数根;②函数”
(I)判断函数是否是集合M中的元素,并说明理由;
(II)集合M中的元素具有下面的性质:若 的定义域为D,则对于任意成立。试用这一性质证明:方程只有一个实数根;
(III)对于M中的函数 的实数根,求证:对于定义域中任意的当且
(本小题满分12分)
已知函数
(I)若在区间上是增函数,求实数a的取值范围;
(II)若的一个极值点,求上的最大值;
(III)在(II)的条件下,是否存在实数b,使得函数的图象恰有3个交点,若存在,请求出实数b的取值范围;若不存在,试说明理由。
(本小题满分12分)如图,在三棱锥中,底面
,
点,分别在棱上,且
(Ⅰ)求证:平面;
(Ⅱ)当为的中点时,求与平面所成的角的余弦值;
(Ⅲ)是否存在点使得二面角为直二面角?并说明理由.
(本小题满分12分)在直三棱柱ABC—A1B1C1中,∠ACB=90°,AC=BC=AA1=1,D、E分别为棱AB、BC的中点,M为棱AA1上的点。
(1)证明:A1B1⊥C1D;
(2)当的大小。
试题篮
()