优题课 - 聚名师,上好课(www.youtike.com)
  首页 / 试题库 / 高中数学试题 / 解答题
高中数学

在△中,内角的对边分别为,已知.
(Ⅰ)求
(Ⅱ)若,求△面积的最大值.

  • 题型:未知
  • 难度:未知

对于函数,若在定义域内存在实数,满足,则称为“局部奇函数”.
(Ⅰ)已知二次函数,试判断是否为“局部奇函数”?并说明理由;
(Ⅱ)若是定义在区间上的“局部奇函数”,求实数的取值范围;
(Ⅲ)若为定义域上的“局部奇函数”,求实数的取值范围.

  • 题型:未知
  • 难度:未知

已知椭圆的长轴两端点分别为是椭圆上的动点,以为一边在轴下方作矩形,使于点于点

(Ⅰ)如图(1),若,且为椭圆上顶点时,的面积为12,点到直线的距离为,求椭圆的方程;
(Ⅱ)如图(2),若,试证明:成等比数列.

  • 题型:未知
  • 难度:未知

已知向量,其中的内角.
(Ⅰ)求角的大小;
(Ⅱ)若,且,求的长.

  • 题型:未知
  • 难度:未知

设等差数列的前项和,且.
(1)求数列的通项公式;
(2)若数列满足,求数列的前项和.

  • 题型:未知
  • 难度:未知

已知点,若动点满足
(1)求动点的轨迹曲线的方程;
(2)在曲线上求一点,使点到直线:的距离最小.

  • 题型:未知
  • 难度:未知

在边长为的正方形中,分别为的中点,分别为的中点,现沿折叠,使三点重合,重合后的点记为,构成一个三棱锥.

(1)请判断与平面的位置关系,并给出证明;
(2)证明平面
(3)求四棱锥的体积.

  • 题型:未知
  • 难度:未知

已知函数
(1)当时,求上的最小值;
(2)若函数上为增函数,求正实数的取值范围;
(3)若关于的方程在区间内恰有两个相异的实根,求实数的取值范围.

  • 题型:未知
  • 难度:未知

若正数项数列的前项和为,首项,点在曲线上.
(1)求
(2)求数列的通项公式
(3)设,表示数列的前项和,若恒成立,求及实数的取值范围.

  • 题型:未知
  • 难度:未知

已知函数.
(1)求的最小正周期和最小值;
(2)若,求的值.

  • 题型:未知
  • 难度:未知

已知数列及其前项和满足:).
(1)证明:设是等差数列;(2)求.

  • 题型:未知
  • 难度:未知

向量,设函数,(,且为常数)
(1)若为任意实数,求的最小正周期;
(2)若上的最大值与最小值之和为,求的值.

  • 题型:未知
  • 难度:未知

设函数的图像在处取得极值4.
(1)求函数的单调区间;
(2)对于函数,若存在两个不等正数,当时,函数的值域是,则把区间叫函数的“正保值区间”.问函数是否存在“正保值区间”,若存在,求出所有的“正保值区间”;若不存在,请说明理由.

  • 题型:未知
  • 难度:未知

如图已知:菱形所在平面与直角梯形ABCD所在平面互相垂直,分别是线段的中点. 

(1)求证:平面平面;
(2)试问在线段上是否存在点,使得平面,若存在,求的长并证明;若不存在,说明理由.

  • 题型:未知
  • 难度:未知

高中数学解答题