为了比较“传统式教学法”与我校所创立的“三步式教学法”的教学效果.共选100名学生随机分成两个班,每班50名学生,其中一班采取“传统式教学法”,二班实行“三步式教学法”
(Ⅰ)若全校共有学生2000名,其中男生1100名,现抽取100名学生对两种教学方式的受欢迎程度进行问卷调查,应抽取多少名女生?
(Ⅱ)下表1,2分别为实行“传统式教学”与“三步式教学”后的数学成绩:
表1
数学成绩 |
90分以下 |
90—120分 |
120—140分 |
140分以上 |
频 数 |
15 |
20 |
10 |
5 |
表2
数学成绩 |
90分以下 |
90—120分 |
120—140分 |
140分以上 |
频 数 |
5 |
40 |
3 |
2 |
完成下面2×2列联表,并回答是否有99%的把握认为这两种教学法有差异.
班 次 |
120分以下(人数) |
120分以上(人数) |
合计(人数) |
一班 |
|
|
|
二班 |
|
|
|
合计 |
|
|
|
参考公式:,其中
参考数据:
P(K2≥k0) |
0.40 |
0.25 |
0.10 |
0.05 |
0.010 |
0.005 |
k0 |
0.708 |
1.323 |
2.706 |
3.841 |
6.635 |
7.879 |
在等差数列{an}中,为其前n项和,且
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)设,求数列的前项和.
设函数.
(1)当时,求曲线在处的切线方程;
(2)当时,求函数的单调区间;
(3)在(2)的条件下,设函数,若对于[1,2],[0,1],使成立,求实数的取值范围.
已知椭圆:的长轴长为4,且过点.
(1)求椭圆的方程;
(2)设、、是椭圆上的三点,若,点为线段的中点,、两点的坐标分别为、,求证:.
若数列的前项和为,对任意正整数都有,记.
(1)求,的值;
(2)求数列的通项公式;
(3)若求证:对任意.
如图,在四棱锥中,底面为菱形,其中,,为的中点.
(1) 求证:;
(2) 若平面平面,且为的中点,求四棱锥的体积.
极坐标系与直角坐标系有相同的长度单位,以原点为极点,以轴正半轴为极轴.已知直线的参数方程为(为参数),曲线的极坐标方程为.
(Ⅰ)求的直角坐标方程;
(Ⅱ)设直线与曲线交于两点,求弦长.
如图,为圆的直径,为垂直于的一条弦,垂足为,弦与交于点.
(Ⅰ)证明:四点共圆;
(Ⅱ)证明:.
已知动点到定点和的距离之和为.
(Ⅰ)求动点轨迹的方程;
(Ⅱ)设,过点作直线,交椭圆异于的两点,直线的斜率分别为,证明:为定值.
已知点是椭圆:上一点,分别为的左右焦点,,的面积为.
(Ⅰ)求椭圆的方程;
(Ⅱ)设,过点作直线,交椭圆异于的两点,直线的斜率分别为,证明:为定值.
在如图所示的几何体中,四边形均为全等的直角梯形,且,.
(Ⅰ)求证:平面;
(Ⅱ)求二面角的余弦值.
试题篮
()