设为抛物线 ()的焦点,为该抛物线上三点,若,且
(Ⅰ)求抛物线的方程;
(Ⅱ)点的坐标为(,)其中,过点F作斜率为的直线与抛物线交于、两点,、两点的横坐标均不为,连结、并延长交抛物线于、两点,设直线的斜率为.若,求的值.
设函数,.
⑴ 求不等式的解集;
⑵ 如果关于的不等式在上恒成立,求实数的取值范围.
在直角坐标系中,曲线的参数方程为,
以原点为极点,轴正半轴为极轴建立极坐标系,曲线的极坐标方程为.
⑴ 求曲线的普通方程和曲线的直角坐标方程;
⑵ 当时,曲线和相交于、两点,求以线段为直径的圆的直角坐标方程.
如图,是的直径,弦与垂直,并与相交于点,点为弦上异于点的任意一点,连结、并延长交于点、.
⑴ 求证:、、、四点共圆;
⑵ 求证:.
已知函数.
⑴ 求函数的单调区间;
⑵ 如果对于任意的,总成立,求实数的取值范围;
⑶ 是否存在正实数,使得:当时,不等式恒成立?请给出结论并说明理由.
如图,是矩形中边上的点,为边的中点,,现将沿边折至位置,且平面平面.
⑴ 求证:平面平面;
⑵ 求四棱锥的体积.
在直角坐标系中,曲线的参数方程为,
以原点为极点,轴正半轴为极轴建立极坐标系,曲线的极坐标方程为.
⑴ 求曲线的普通方程和曲线的直角坐标方程;
⑵ 当时,曲线和相交于、两点,求以线段为直径的圆的直角坐标方程.
如图,是的直径,弦与垂直,并与相交于点,点为弦上异于点的任意一点,连结、并延长交于点、.
⑴ 求证:、、、四点共圆;
⑵ 求证:.
已知函数.
⑴ 求函数的单调区间;
⑵ 如果对于任意的,总成立,求实数的取值范围;
⑶ 设函数,. 过点作函数图像的所有切线,令各切点的横坐标构成数列,求数列的所有项之和的值.
2012年第三季度,国家电网决定对城镇居民民用电计费标准做出调整,并根据用电情况将居民分为三类: 第一类的用电区间在,第二类在,第三类在(单位:千瓦时). 某小区共有1000户居民,现对他们的用电情况进行调查,得到频率分布直方图如图所示.
⑴ 求该小区居民用电量的中位数与平均数;
⑵ 利用分层抽样的方法从该小区内选出10位居民代表,若从该10户居民代表中任选两户居民,求这两户居民用电资费属于不同类型的概率;
⑶ 若该小区长期保持着这一用电消耗水平,电力部门为鼓励其节约用电,连续10个月,每个月从该小区居民中随机抽取1户,若取到的是第一类居民,则发放礼品一份,设为获奖户数,求的数学期望与方差.
已知函数.
(I)求函数的单调区间;
(Ⅱ)若,对都有成立,求实数的取值范围;
(Ⅲ)证明:(且).
已知椭圆C:的离心率为,
直线:y=x+2与原点为圆心,以椭圆C的短轴长为直
径的圆相切.
(Ⅰ)求椭圆C的方程;
(Ⅱ)过点的直线与椭圆交于,两点.设直线的斜率,在轴上是否存在点,使得是以GH为底边的等腰三角形. 如果存在,求出实数的取值范围,如果不存在,请说明理由.
某校高三4班有50名学生进行了一场投篮测试,其中男生30人,女生20人.为了了解其投篮成绩,甲、乙两人分别都对全班的学生进行编号(1~50号),并以不同的方法进行数据抽样,其中一人用的是系统抽样,另一人用的是分层抽样.若此次投篮考试的成绩大于或等于80分视为优秀,小于80分视为不优秀,以下是甲、乙两人分别抽取的样本数据:
编号 |
性别 |
投篮成绩 |
2 |
男 |
90 |
7 |
女 |
60 |
12 |
男 |
75 |
17 |
男 |
80 |
22 |
女 |
83 |
27 |
男 |
85 |
32 |
女 |
75 |
37 |
男 |
80 |
42 |
女 |
70 |
47 |
女 |
60 |
甲抽取的样本数据
编号 |
性别 |
投篮成绩 |
1 |
男 |
95 |
8 |
男 |
85 |
10 |
男 |
85 |
20 |
男 |
70 |
23 |
男 |
70 |
28 |
男 |
80 |
33 |
女 |
60 |
35 |
女 |
65 |
43 |
女 |
70 |
48 |
女 |
60 |
乙抽取的样本数据
(Ⅰ)观察乙抽取的样本数据,若从男同学中抽取两名,求两名男同学中恰有一名非优秀的概率.
(Ⅱ)请你根据乙抽取的样本数据完成下列2×2列联表,判断是否有95%以上的把握认为投篮成绩和性别有关?
|
优秀 |
非优秀 |
合计 |
男 |
|
|
|
女 |
|
|
|
合计 |
|
|
10 |
(Ⅲ)判断甲、乙各用何种抽样方法,并根据(Ⅱ)的结论判断哪种抽样方法更优?说明理由.
下面的临界值表供参考:
0.15 |
0.10 |
0.05 |
0.010 |
0.005 |
0.001 |
|
2.072 |
2.706 |
3.841 |
6.635 |
7.879 |
10.828 |
(参考公式:,其中)
已知平面向量若函数.
(Ⅰ)求函数的最小正周期;
(Ⅱ)将函数的图象上的所有的点向左平移1个单位长度,得到函数的图象,若函数在上有两个零点,求实数的取值范围.
试题篮
()