如图,已知点P是y轴左侧(不含y轴)一点,抛物线C:y 2=4x上存在不同的两点A,B满足PA,PB的中点均在C上.
(Ⅰ)设AB中点为M,证明:PM垂直于y轴;
(Ⅱ)若P是半椭圆x 2+ =1(x<0)上的动点,求△PAB面积的取值范围.
已知等比数列{an}的公比q>1,且a3+a4+a5=28,a4+2是a3,a5的等差中项.数列{bn}满足b1=1,数列{(bn+1−bn)an}的前n项和为2n2+n.
(Ⅰ)求q的值;
(Ⅱ)求数列{bn}的通项公式.
如图,已知多面体ABC-A 1B 1C 1,A 1A,B 1B,C 1C均垂直于平面ABC,∠ABC=120°,A 1A=4,C 1C=1,AB=BC=B 1B=2.
(Ⅰ)证明:AB 1⊥平面A 1B 1C 1;
(Ⅱ)求直线AC 1与平面ABB 1所成的角的正弦值.
已知角α的顶点与原点O重合,始边与x轴的非负半轴重合,它的终边过点P( ).
(Ⅰ)求sin(α+π)的值;
(Ⅱ)若角β满足sin(α+β)= ,求cosβ的值.
在直角坐标系 中,曲线 的方程为 .以坐标原点为极点, 轴正半轴为极轴建立极坐标系,曲线 的极坐标方程为 .
(1)求 的直角坐标方程;
(2)若 与 有且仅有三个公共点,求 的方程.
设抛物线 ,点 , ,过点 的直线 与 交于 , 两点.
(1)当 与 轴垂直时,求直线 的方程;
(2)证明: .
某家庭记录了未使用节水龙头 天的日用水量数据(单位: )和使用了节水龙头 天的日用水量数据,得到频数分布表如下:
未使用节水龙头 天的日用水量频数分布表
日用水量 |
|
|
|
|
|
|
|
频数 |
|
|
|
|
|
|
|
使用了节水龙头 天的日用水量频数分布表
日用水量 |
|
|
|
|
|
|
频数 |
|
|
|
|
|
|
(1)在答题卡上作出使用了节水龙头 天的日用水量数据的频率分布直方图:
(2)估计该家庭使用节水龙头后,日用水量小于 的概率;
(3)估计该家庭使用节水龙头后,一年能节省多少水?(一年按 天计算,同一组中的数据以这组数据所在区间中点的值作代表.)
如图,在平行四边形 中, , ,以 为折痕将△ 折起,使点 到达点 的位置,且 .
(1)证明:平面 平面 ;
(2) 为线段 上一点, 为线段 上一点,且 ,求三棱锥 的体积.
已知数列 满足 , ,设 .
(1)求 ;
(2)判断数列 是否为等比数列,并说明理由;
(3)求 的通项公式.
在直角坐标系 中,曲线 的参数方程为 ( 为参数),直线 的参数方程为 ( 为参数).
(1)求 和 的直角坐标方程;
(2)若曲线 截直线 所得线段的中点坐标为 ,求 的斜率.
设抛物线 的焦点为 ,过 且斜率为 的直线 与 交于 , 两点, .
(1)求 的方程;
(2)求过点 , 且与 的准线相切的圆的方程.
如图,在三棱锥 中, , , 为 的中点.
(1)证明: 平面 ;
(2)若点 在棱 上,且 ,求点 到平面 的距离.
试题篮
()