如图,
切
于点
,直线
交
于
两点,
垂足为
.
(Ⅰ)证明:
(Ⅱ)若 ,求 的直径.
如图,椭圆
经过点
,且离心率为
.
(Ⅰ)求椭圆
的方程;
(Ⅱ)经过点 ,且斜率为
的直线与椭圆
交于不同两点
(均异于点
),证明:直线
与
的斜率之和为2.
随机抽取一个年份,对西安市该年4月份的天气情况进行统计,结果如下:
(Ⅰ)在4月份任取一天,估计西安市在该天不下雨的概率;
(Ⅱ)西安市某学校拟从4月份的一个晴天开始举行连续两天的运动会,估计运动会期间不下雨的概率.
如图1,在直角梯形 中, , 是 的中点, 是 与 的交点,将 沿 折起到图2中 的位置,得到四棱锥 .
(Ⅰ)证明:
平面
;
(Ⅱ)当平面
平面
时,四棱锥
的体积为
,求
的值.
在直角坐标系中,直线的参数方程为(为参数).以原点为极点,轴正半轴为极轴建立极坐标系.的极坐标方程为.
(Ⅰ)写出的直角坐标方程;
(Ⅱ)为直线上一动点,当到圆心的距离最小时,求的直角坐标.
如图,
切
于点 ,直线
交
于
, 两点,
,垂足为
.
(Ⅰ)证明:
;
(Ⅱ)若
,
,求
的直径.
设是等比数列,,的各项和,其中,
(Ⅰ)证明:函数在内有且仅有一个零点(记为),且;
(Ⅱ)设有一个与上述等比数列的首项、末项、项数分别相同的等差数列,其各项和为,比较与的大小,并加以证明.
已知椭圆
的半焦距为
,原点
到经过两点
的直线的距离为
.
(Ⅰ)求椭圆
的离心率;
(Ⅱ)如图,
是圆
的一条直径,若椭圆
经过
两点,求椭圆
的方程.
设某校新、老校区之间开车单程所需时间为 , 只与道路畅通状况有关,对其容量为 的样本进行统计,结果如下:
(Ⅰ)求
的分布列与数学期望
;
(Ⅱ)刘教授驾车从老校区出发,前往新校区做一个50分钟的讲座,结束后立即返回老校区,求刘教授从离开老校区到返回老校区共用时间不超过120分钟的概率.
如图 ,在直角梯形
中,
,
,
,
, 是
的中点,
是
与
的交点.将
沿
折起到
的位置,如图 .
(Ⅰ)证明:
平面
;
(Ⅱ)若平面
平面
,求平面
与平面
夹角的余弦值.
平面直角坐标系中,已知椭圆:的离心率为,且点(,)在椭圆上.
(Ⅰ)求椭圆的方程;
(Ⅱ)设椭圆:,为椭圆上任意一点,过点的直线交椭圆于两点,射线交椭圆于点.
(ⅰ)求的值;
(ⅱ)求面积的最大值.
试题篮
()