如图,在平面直角坐标系中, 的三个顶点分别是 , , , .抛物线 经过点 ,且对称轴为 ,并与 轴交于点 .
(1)求抛物线的解析式及点 的坐标;
(2)将 沿 轴向右平移 个单位,使 点移到点 ,然后将三角形绕点 顺时针旋转 得到 .若点 恰好落在抛物线上.
①求 的值;
②连接 交 轴于点 ,连接 ,过 作 ,交 于点 ,求证: .
如图,在平面直角坐标系中, 的三个顶点分别是 , , , .抛物线 经过点 ,且对称轴为 ,并与 轴交于点 .
(1)求抛物线的解析式及点 的坐标;
(2)将 沿 轴向右平移 个单位,使 点移到点 ,然后将三角形绕点 顺时针旋转 得到 .若点 恰好落在抛物线上.
①求 的值;
②连接 交 轴于点 ,连接 ,过 作 ,交 于点 ,求证: .
如图,抛物线 经过 , 两点,与 轴交于点 .
(1)求抛物线的解析式及顶点 的坐标;
(2)点 在抛物线的对称轴上,当 的周长最小时,求出点 的坐标;
(3)点 在抛物线上,点 在抛物线的对称轴上,是否存在以点 为直角顶点的 与 相似?若存在,请求出所有符合条件的点 的坐标;若不存在,请说明理由.
如图,二次函数 的图象与 轴的一个交点为 ,另一个交点为 ,且与 轴相交于 点.
(1)求 的值及 点坐标;
(2)在直线 上方的抛物线上是否存在一点 ,使得它与 , 两点构成的三角形面积最大,若存在,求出此时 点坐标;若不存在,请简要说明理由;
(3) 为抛物线上一点,它关于直线 的对称点为
①当四边形 为菱形时,求点 的坐标;
②点 的横坐标为 ,当 为何值时,四边形 的面积最大,请说明理由.
如图,四边形 是边长为4的正方形,点 为 边上任意一点(与点 、 不重合),连接 ,过点 作 交 于点 ,且 ,过点 作 ,交 于点 ,连接 、 ,设 .
(1)求点 的坐标(用含 的代数式表示);
(2)试判断线段 的长度是否随点 的位置的变化而改变?并说明理由.
(3)当 为何值时,四边形 的面积最小;
(4)在 轴正半轴上存在点 ,使得 是等腰三角形,请直接写出不少于4个符合条件的点 的坐标(用含 的式子表示).
如图,直线 与 轴、 轴分别相交于点 、 ,经过 、 两点的抛物线 与 轴的另一个交点为 ,顶点为 ,且对称轴为直线 .
(1)求该抛物线的解析式;
(2)连接 、 ,求 的面积;
(3)连接 ,在 轴上是否存在一点 ,使得以点 , , 为顶点的三角形与 相似?若存在,求出点 的坐标;若不存在,请说明理由.
如图,抛物线 的图象与 轴交于 , 两点,与 轴交于点 ,顶点为 .
(1)求此抛物线的解析式.
(2)求此抛物线顶点 的坐标和对称轴.
(3)探究对称轴上是否存在一点 ,使得以点 、 、 为顶点的三角形是等腰三角形?若存在,请求出所有符合条件的 点的坐标,若不存在,请说明理由.
如图,直线 交 轴于点 ,交 轴于点 ,过 , 两点的二次函数 的图象交 轴于另一点 .
(1)求二次函数的表达式;
(2)连接 ,点 是线段 上的动点,作 轴交二次函数的图象于点 ,求线段 长度的最大值;
(3)若点 为二次函数 图象的顶点,点 是该二次函数图象上一点,在 轴、 轴上分别找点 , ,使四边形 的周长最小,求出点 , 的坐标.
温馨提示:在直角坐标系中,若点 , 的坐标分别为 , , , ,
当 平行 轴时,线段 的长度可由公式 求出;
当 平行 轴时,线段 的长度可由公式 求出.
如图,已知抛物线 与直线 交于 、 两点,点 是抛物线上 、 之间的一个动点,过点 分别作 轴、 轴的平行线与直线 交于点 和点 .
(1)求抛物线的解析式;
(2)若 为 中点,求 的长;
(3)如图,以 , 为边构造矩形 ,设点 的坐标为 ,请求出 , 之间的关系式.
如图,抛物线经过 , , 三点.
(Ⅰ)求抛物线的解析式;
(Ⅱ)在抛物线的对称轴上有一点 ,使 的值最小,求点 的坐标.
(Ⅲ)点 为 轴上一动点,在抛物线上是否存在一点 ,使以 , , , 四点构成的四边形为平行四边形?若存在,求点 的坐标;若不存在,请说明理由.
如图,矩形 的顶点 、 分别位于 轴和 轴的正半轴上,线段 、 的长度满足方程 ,直线 分别与 轴、 轴交于 、 两点,将 沿直线 折叠,点 恰好落在直线 上的点 处,且
(1)求点 的坐标;
(2)求直线 的解析式;
(3)将直线 以每秒1个单位长度的速度沿 轴向下平移,求直线 扫过矩形 的面积 关于运动的时间 的函数关系式.
已知:如图,直线 与 轴负半轴交于点 ,与 轴正半轴交于点 ,线段 的长是方程 的一个根,请解答下列问题:
(1)求点 坐标;
(2)双曲线 与直线 交于点 ,且 ,求 的值;
(3)在(2)的条件下,点 在线段 上, ,直线 轴,垂足为点 ,点 在直线 上,坐标平面内是否存在点 ,使以 、 、 、 为顶点的四边形是矩形?若存在,请直接写出点 的坐标;若不存在,请说明理由.
如图,直角 中, 为直角, , .点 , , 分别在 , , 边上同时开始作匀速运动,2秒后三个点同时停止运动,点 由点 出发以每秒3个单位的速度向点 运动,点 由点 出发以每秒5个单位的速度向点 运动,点 由点 出发以每秒4个单位的速度向点 运动,在运动过程中:
(1)求证: , , 的面积相等;
(2)求 面积的最小值;
(3)用 (秒 表示运动时间,是否存在 ,使 ?若存在,请直接写出 的值;若不存在,请说明理由.
如图,直线 与 轴、 轴分别交于 , 两点,抛物线 与直线 分别交 轴的正半轴于点 和第一象限的点 ,连接 ,得 为坐标原点).若抛物线与 轴正半轴交点为点 ,设 是点 , 间抛物线上的一点(包括端点),其横坐标为 .
(1)直接写出点 的坐标和抛物线的解析式;
(2)当 为何值时, 面积 取得最小值和最大值?请说明理由;
(3)求满足 的点 的坐标.
试题篮
()