优题课 - 聚名师,上好课(www.youtike.com)
  首页 / 试题库 / 初中数学试题 / 规律型:图形的变化类 / 解答题
初中数学

用同样大小的黑色棋子按如图所示的规律摆放:

(1)第5个图形有多少颗黑色棋子?
(2)第几个图形有2016颗黑色棋子?请说明理由.

  • 题型:未知
  • 难度:未知

用同样大小的黑色棋子按如图所示的规律摆放:

(1)第5个图形有多少颗黑色棋子?
(2)第几个图形有2013颗黑色棋子?请说明理由.

  • 题型:未知
  • 难度:未知

在数学的学习过程中,我们经常用以下的探索过程解决相关问题.
数学问题:三角形有3个顶点,如果在它的内部再画个点,并以这个点为顶点画三角形,那么可以剪得多少个这样的三角形?

探索规律:为了解决这个问题,我们可以从等具体的、简单的情形入手,探索最多可以剪得的三角形个数的变化规律.
(1)填表:当三角形内有4个点时,把表格补充完整;
(2)你发现的变化规律是:    
(3)猜想:当三角形内点的个数为时,最多可以剪得        个三角形;
像这样通过对简单情形的观察、分析,从特殊到一般地探索这类现象的规律、提出猜想的思想方法称为归纳.
问题解决:请你尝试用归纳的方法探索的和是多少?

  • 题型:未知
  • 难度:未知

“分块计数法”:对有规律的图形进行计数时,有些题可以采用“分块计数”的方法.

例如:图1有6个点,图2有12个点,图3有18个点, ,按此规律,求图10、图 n 有多少个点?

我们将每个图形分成完全相同的6块,每块黑点的个数相同(如图),这样图1中黑点个数是 6 × 1 = 6 个;图2中黑点个数是 6 × 2 = 12 个:图3中黑点个数是 6 × 3 = 18 个; ;所以容易求出图10、图 n 中黑点的个数分别是    

请你参考以上“分块计数法”,先将下面的点阵进行分块,再完成以下问题:

(1)第5个点阵中有  个圆圈;第 n 个点阵中有  个圆圈.

(2)小圆圈的个数会等于271吗?如果会,请求出是第几个点阵.

来源:2018年贵州省黔东南州中考数学试卷
  • 题型:未知
  • 难度:未知

如图,线段AB上的点数与线段的总数有如下关系:如果线段AB上有1个点时,线段总共有3条,如果线段AB上有2个点时,线段总数有6条,如果线段AB上有3个点时,线段总数共有10条,…

(1)当线段AB上有6个点时,线段总数共有      条.
(2)当线段AB上有n个点时,线段总数共有      条。
(3)如果从一个多边形的一个顶点出发,分别连接这个顶点与其余各顶点,可将这个多边形分割成2003个三角形,那么此多边形的边数为多少?

  • 题型:未知
  • 难度:未知

如图所示,AB=16cm,

(1)若C1是AB的中点,求AC1的长度
(2)若C2是A C1的中点,求AC2的长度
(3)若C3是A C2的中点,求AC3的长度
(4)若照上述规律发展下去,则ACn的长度是多少呢?

  • 题型:未知
  • 难度:未知

问题提出:用若干相同的一个单位长度的细直木棒,按照如图1方式搭建一个长方体框架,探究所用木棒条数的规律.

问题探究:

我们先从简单的问题开始探究,从中找出解决问题的方法.

探究一

用若干木棒来搭建横长是 m ,纵长是 n 的矩形框架 ( m n 是正整数),需要木棒的条数.

如图①,当 m = 1 n = 1 时,横放木棒为 1 × ( 1 + 1 ) 条,纵放木棒为 ( 1 + 1 ) × 1 条,共需4条;

如图②,当 m = 2 n = 1 时,横放木棒为 2 × ( 1 + 1 ) 条,纵放木棒为 ( 2 + 1 ) × 1 条,共需7条;

如图③,当 m = 2 n = 2 时,横放木棒为 2 × ( 2 + 1 ) 条,纵放木棒为 ( 2 + 1 ) × 2 条,共需12条;

如图④,当 m = 3 n = 1 时,横放木棒为 3 × ( 1 + 1 ) 条,纵放木棒为 ( 3 + 1 ) × 1 条,共需10条;

如图⑤,当 m = 3 n = 2 时,横放木棒为 3 × ( 2 + 1 ) 条,纵放木棒为 ( 3 + 1 ) × 2 条,共需17条.

问题(一 ) :当 m = 4 n = 2 时,共需木棒  条.

问题(二 ) :当矩形框架横长是 m ,纵长是 n 时,横放的木棒为  条,

纵放的木棒为  条.

探究二

用若干木棒来搭建横长是 m ,纵长是 n ,高是 s 的长方体框架 ( m n s 是正整数),需要木棒的条数.

如图⑥,当 m = 3 n = 2 s = 1 时,横放与纵放木棒之和为 [ 3 × ( 2 + 1 ) + ( 3 + 1 ) × 2 ] × ( 1 + 1 ) = 34 条,竖放木棒为 ( 3 + 1 ) × ( 2 + 1 ) × 1 = 12 条,共需46条;

如图⑦,当 m = 3 n = 2 s = 2 时,横放与纵放木棒之和为 [ 3 × ( 2 + 1 ) + ( 3 + 1 ) × 2 ] × ( 2 + 1 ) = 51 条,竖放木棒为 ( 3 + 1 ) × ( 2 + 1 ) × 2 = 24 条,共需75条;

如图⑧,当 m = 3 n = 2 s = 3 时,横放与纵放木棒之和为 [ 3 × ( 2 + 1 ) + ( 3 + 1 ) × 2 ] × ( 3 + 1 ) = 68 条,竖放木棒为 ( 3 + 1 ) × ( 2 + 1 ) × 3 = 36 条,共需104条.

问题(三 ) :当长方体框架的横长是 m ,纵长是 n ,高是 s 时,横放与纵放木棒条数之和为  条,竖放木棒条数为  条.

实际应用:现在按探究二的搭建方式搭建一个纵长是2、高是4的长方体框架,总共使用了170条木棒,则这个长方体框架的横长是  

拓展应用:若按照如图2方式搭建一个底面边长是10,高是5的正三棱柱框架,需要木棒  条.

来源:2018年山东省青岛市中考数学试卷
  • 题型:未知
  • 难度:未知

在2020年新冠肺炎疫情期间,某中学响应政府有“停课不停学”的号召,充分利用网络资源进行网上学习,九年级1班的全体同学在自主完成学习任务的同时,彼此关怀,全班每两个同学都通过一次电话,互相勉励,共同提高,如果该班共有48名同学,若每两名同学之间仅通过一次电话,那么全班同学共通过多少次电话呢?我们可以用下面的方式来解决问题.

用点A1A2A3A48分表示第1名同学、第2名同学、第3名同学…第48名同学,把该班级人数x与通电话次数y之间的关系用如图模型表示:

(1)填写上图中第四个图中y的值为  ,第五个图中y的值为  

(2)通过探索发现,通电话次数y与该班级人数x之间的关系式为   ,当 x 48 时,对应的y     

(3)若九年级1班全体女生相互之间共通话190次,问:该班共有多少名女生?

来源:2020年贵州省黔南州中考数学试卷
  • 题型:未知
  • 难度:未知

某餐厅中,一张桌子可坐6人,有以下两种摆放方式:
(1)当有n张桌子时,两种摆放方式各能坐多少人?
(2)一天中午餐厅要接待98位顾客共同就餐,但餐厅只有25张这样的餐桌,若你是这个餐厅的经理,你打算选择哪种方式来摆放餐桌,为什么?

  • 题型:未知
  • 难度:未知

问题提出:

如图,图①是一张由三个边长为1的小正方形组成的“”形纸片,图②是一张的方格纸的方格纸指边长分别为的矩形,被分成个边长为1的小正方形,其中,且为正整数).把图①放置在图②中,使它恰好盖住图②中的三个小正方形,共有多少种不同的放置方法?

问题探究:

为探究规律,我们采用一般问题特殊化的策略,先从最简单的情形入手,再逐次递进,最后得出一般性的结论.

探究一:

把图①放置在的方格纸中,使它恰好盖住其中的三个小正方形,共有多少种不同的放置方法?

如图③,对于的方格纸,要用图①盖住其中的三个小正方形,显然有4种不同的放置方法.

探究二:

把图①放置在的方格纸中,使它恰好盖住其中的三个小正方形,共有多少种不同的放置方法?

如图④,在的方格纸中,共可以找到2个位置不同的方格,依据探究一的结论可知,把图①放置在的方格纸中,使它恰好盖住其中的三个小正方形,共有种不同的放置方法.

探究三:

把图①放置在的方格纸中,使它恰好盖住其中的三个小正方形,共有多少种不同的放置方法?

如图⑤,在的方格纸中,共可以找到  个位置不同的方格,依据探究一的结论可知,把图①放置在的方格纸中,使它恰好盖住其中的三个小正方形,共有  种不同的放置方法.

探究四:

把图①放置在的方格纸中,使它恰好盖住其中的三个小正方形,共有多少种不同的放置方法?

如图⑥,在的方格纸中,共可以找到  个位置不同的方格,依据探究一的结论可知,把图①放置在的方格纸中,使它恰好盖住其中的三个小正方形,共有  种不同的放置方法.

问题解决:

把图①放置在的方格纸中,使它恰好盖住其中的三个小正方形,共有多少种不同的放置方法?(仿照前面的探究方法,写出解答过程,不需画图.

问题拓展:

如图,图⑦是一个由4个棱长为1的小立方体构成的几何体,图⑧是一个长、宽、高分别为,且是正整数)的长方体,被分成了个棱长为1的小立方体.在图⑧的不同位置共可以找到  个图⑦这样的几何体.

来源:2019年山东省青岛市中考数学试卷
  • 题型:未知
  • 难度:未知

如图, 一个4×2的矩形可以用3种不同的方式分割成2或5或8个小正方形.

(1)一个3×2的矩形用不同的方式分割后, 小正方形的个数可以是                  
一个5×2的矩形用不同的方式分割后, 小正方形的个数可以是                  
(2)一个n×2的矩形用不同的方式分割后,小正方形的个数最少是____________________.(直接填写结果).

  • 题型:未知
  • 难度:未知

(阅读)

数学中,常对同一个量(图形的面积、点的个数、三角形的内角和等)用两种不同的方法计算,从而建立相等关系,我们把这一思想称为“算两次”.“算两次”也称做富比尼原理,是一种重要的数学思想.

(理解)

(1)如图1,两个直角边长分别为 a b 、斜边长为 c 的直角三角形和一个两条直角边都是 c 的直角三角形拼成一个梯形.用两种不同的方法计算梯形的面积,并写出你发现的结论;

(2)如图2, n n 列的棋子排成一个正方形,用两种不同的方法计算棋子的个数,可得等式: n 2 =                         

(运用)

(3) n 边形有 n 个顶点,在它的内部再画 m 个点,以 ( m + n ) 个点为顶点,把 n 边形剪成若干个三角形,设最多可以剪得 y 个这样的三角形.当 n = 3 m = 3 时,如图3,最多可以剪得7个这样的三角形,所以 y = 7

①当 n = 4 m = 2 时,如图4, y =      ;当 n = 5 m =    时, y = 9

②对于一般的情形,在 n 边形内画 m 个点,通过归纳猜想,可得 y =   (用含 m n 的代数式表示).请对同一个量用算两次的方法说明你的猜想成立.

来源:2019年江苏省常州市中考数学试卷
  • 题型:未知
  • 难度:未知

观察下面的图形(每个正方形的边长均为1)和相应的等式,探究其中的规律:

(1)写出第五个等式,并在右边给出的五个正方形上画出与之对应的图示;

(2)猜想并写出与第n个图形相对应的等式.

  • 题型:未知
  • 难度:未知

(1)观察下列图形与等式的关系,并填空

(2)观察下图,根据(1)中结论,计算图中黑球的个数,用含有的代数式填空:

    

来源:2016年安徽省中考数学试卷
  • 题型:未知
  • 难度:未知

图1是由若干个小圆圈堆成的一个形如等边三角形的图案,最上面一层有一个圆圈,
以下各层均比上一层多一个圆圈,一共堆了n 层.将图1倒置后与原图1拼成图2的形状,这样我们可以
算出图1中所有圆圈的个数为1+2+3+…+n=

如果图中的圆圈共有13层,请解决下列问题:
(1)我们自上往下,在每个圆圈中按图3的方式填上一串连续的正整数1,2,3,4,……,则最底层最左
边这个圆圈中的数是        
(2)我们自上往下,在每个圆圈中按图4的方式填上一串连续的整数-23,-22,-21,-20,……,求
最底层最右边圆圈内的数是_______;
(3)求图4中所有圆圈中各数的绝对值之和.

  • 题型:未知
  • 难度:未知

初中数学规律型:图形的变化类解答题