某商场购进甲、乙两种商品,甲种商品共用了2000元,乙种商品共用了2400元.已知乙种商品每件进价比甲种商品每件进价多8元,且购进的甲、乙两种商品件数相同.
(1)求甲、乙两种商品的每件进价;
(2)该商场将购进的甲、乙两种商品进行销售,甲种商品的销售单价为60元,乙种商品的销售单价为88元,销售过程中发现甲种商品销量不好,商场决定:甲种商品销售一定数量后,将剩余的甲种商品按原销售单价的七折销售;乙种商品销售单价保持不变.要使两种商品全部售完后共获利不少于2460元,问甲种商品按原销售单价至少销售多少件?
“绿水青山,就是金山银山”.某旅游景区为了保护环境,需购买 、 两种型号的垃圾处理设备共10台.已知每台 型设备日处理能力为12吨;每台 型设备日处理能力为15吨;购回的设备日处理能力不低于140吨.
(1)请你为该景区设计购买 、 两种设备的方案;
(2)已知每台 型设备价格为3万元,每台 型设备价格为4.4万元.厂家为了促销产品,规定货款不低于40万元时,则按9折优惠;问:采用(1)设计的哪种方案,使购买费用最少,为什么?
某学校计划购买排球、篮球,已知购买1个排球与1个篮球的总费用为180元;3个排球与2个篮球的总费用为420元.
(1)求购买1个排球、1个篮球的费用分别是多少元?
(2)若该学校计划购买此类排球和篮球共60个,并且篮球的数量不超过排球数量的2倍.求至少需要购买多少个排球?并求出购买排球、篮球总费用的最大值?
郴州市正在创建“全国文明城市”,某校拟举办“创文知识”抢答赛,欲购买 、 两种奖品以鼓励抢答者.如果购买 种20件, 种15件,共需380元;如果购买 种15件, 种10件,共需280元.
(1) 、 两种奖品每件各多少元?
(2)现要购买 、 两种奖品共100件,总费用不超过900元,那么 种奖品最多购买多少件?
在整数的除法运算中,只有能整除与不能整除两种情况,当不能整除时,就会产生余数,现在我们利用整数的除法运算来研究一种数 “差一数”.
定义:对于一个自然数,如果这个数除以5余数为4,且除以3余数为2,则称这个数为“差一数”.
例如: , ,所以14是“差一数”;
,但 ,所以19不是“差一数”.
(1)判断49和74是否为“差一数”?请说明理由;
(2)求大于300且小于400的所有“差一数”.
我市南县大力发展农村旅游事业,全力打造“洞庭之心湿地公园”,其中罗文村的“花海、涂鸦、美食”特色游享誉三湘,游人如织.去年村民罗南洲抓住机遇,返乡创业,投入20万元创办农家乐(餐饮 住宿),一年时间就收回投资的 ,其中餐饮利润是住宿利润的2倍还多1万元.
(1)求去年该农家乐餐饮和住宿的利润各为多少万元?
(2)今年罗南洲把去年的餐饮利润全部用于继续投资,增设了土特产的实体店销售和网上销售项目.他在接受记者采访时说:“我预计今年餐饮和住宿的利润比去年会有 的增长,加上土特产销售的利润,到年底除收回所有投资外,还将获得不少于10万元的纯利润.”请问今年土特产销售至少有多少万元的利润?
某自行车经销商计划投入7.1万元购进100辆 型和30辆 型自行车,其中 型车单价是 型车单价的6倍少60元.
(1)求 、 两种型号的自行车单价分别是多少元?
(2)后来由于该经销商资金紧张,投入购车的资金不超过5.86万元,但购进这批自行车的总数不变,那么至多能购进 型车多少辆?
为加强中小学生安全教育,某校组织了“防溺水”知识竞赛,对表现优异的班级进行奖励,学校购买了若干副乒乓球拍和羽毛球拍.购买2副乒乓球拍和1副羽毛球拍共需116元;购买3副乒乓球拍和2副羽毛球拍共需204元.
(1)求购买1副乒乓球拍和1副羽毛球拍各需多少元;
(2)若学校购买乒乓球拍和羽毛球拍共30副,且支出不超过1480元,则最多能够购买多少副羽毛球拍?
2017年5月14日至15日,“一带一路”国际合作高峰论坛在北京举行,本届论坛期间,中国同30多个国家签署经贸合作协议,某厂准备生产甲、乙两种商品共8万件销往“一带一路”沿线国家和地区.已知2件甲种商品与3件乙种商品的销售收入相同,3件甲种商品比2件乙种商品的销售收入多1500元.
(1)甲种商品与乙种商品的销售单价各多少元?
(2)若甲、乙两种商品的销售总收入不低于5400万元,则至少销售甲种商品多少万件?
我市某中学计划举行以“奋斗百年路,启航新征程”为主题的知识竞赛,并对获奖的同学给予奖励.现要购买甲、乙两种奖品,已知1件甲种奖品和2件乙种奖品共需40元,2件甲种奖品和3件乙种奖品共需70元.
(1)求甲、乙两种奖品的单价;
(2)根据颁奖计划,该中学需甲、乙两种奖品共60件,且甲种奖品的数量不少于乙种奖品数量的 ,应如何购买才能使总费用最少?并求出最少费用.
为改善城市人居环境,《成都市生活垃圾管理条例》(以下简称《条例》 于2021年3月1日起正式施行.某区域原来每天需要处理生活垃圾920吨,刚好被12个 型和10个 型预处置点位进行初筛、压缩等处理.已知一个 型点位比一个 型点位每天多处理7吨生活垃圾.
(1)求每个 型点位每天处理生活垃圾的吨数;
(2)由于《条例》的施行,垃圾分类要求提高,在每个点位每天将少处理8吨生活垃圾,同时由于市民环保意识增强,该区域每天需要处理的生活垃圾比原来少10吨.若该区域计划增设 型、 型点位共5个,试问至少需要增设几个 型点位才能当日处理完所有生活垃圾?
新冠疫情期间,口罩成为了人们出行必备的防护工具.某药店三月份共销售 , 两种型号的口罩9000只,共获利润5000元,其中 , 两种型号口罩所获利润之比为 .已知每只 型口罩的销售利润是 型口罩的1.2倍.
(1)求每只 型口罩和 型口罩的销售利润;
(2)该药店四月份计划一次性购进两种型号的口罩共10000只,其中 型口罩的进货量不超过 型口罩的1.5倍,设购进 型口罩 只,这10000只口罩的销售总利润为 元.该药店如何进货,才能使销售总利润最大?
小明购买 , 两种商品,每次购买同一种商品的单价相同,具体信息如下表:
次数 |
购买数量(件 |
购买总费用(元 |
|
|
|
||
第一次 |
2 |
1 |
55 |
第二次 |
1 |
3 |
65 |
根据以上信息解答下列问题:
(1)求 , 两种商品的单价;
(2)若第三次购买这两种商品共12件,且 种商品的数量不少于 种商品数量的2倍,请设计出最省钱的购买方案,并说明理由.
推进农村土地集约式管理,提高土地的使用效率是新农村建设的一项重要举措.某村在小城镇建设中集约了2400亩土地,计划对其进行平整.经投标,由甲乙两个工程队来完成平整任务.甲工程队每天可平整土地45亩,乙工程队每天可平整土地30亩.已知乙工程队每天的工程费比甲工程队少500元,当甲工程队所需工程费为12000元,乙工程队所需工程费为9000元时,两工程队工作天数刚好相同.
(1)甲乙两个工程队每天各需工程费多少元?
(2)现由甲乙两个工程队共同参与土地平整,已知两个工程队工作天数均为正整数,且所有土地刚好平整完,总费用不超过110000元.
①甲乙两工程队分别工作的天数共有多少种可能?
②写出其中费用最少的一种方案,并求出最低费用.
试题篮
()