如图1,二次函数y=﹣x2+bx+c的图象过点A(3,0),B(0,4)两点,动点P从A出发,在线段AB上沿A→B的方向以每秒2个单位长度的速度运动,过点P作PD⊥y于点D,交抛物线于点C.设运动时间为t(秒).
(1)求二次函数y=﹣x2+bx+c的表达式;
(2)连接BC,当 时,求△BCP的面积;
(3)如图2,动点P从A出发时,动点Q同时从O出发,在线段OA上沿O→A的方向以1个单位长度的速度运动.当点P与B重合时,P、Q两点同时停止运动,连接DQ,PQ,将△DPQ沿直线PC折叠得到△DPE.在运动过程中,设△DPE和△OAB重合部分的面积为S,直接写出S与t的函数关系及t的取值范围.

已知直线y=2x+m与抛物线y=ax2+ax+b有一个公共点M(1,0),且a<b.
(Ⅰ)求抛物线顶点Q的坐标(用含a的代数式表示);
(Ⅱ)说明直线与抛物线有两个交点;
(Ⅲ)直线与抛物线的另一个交点记为N.
(ⅰ)若 ,求线段MN长度的取值范围;
(ⅱ)求△QMN面积的最小值.
如图,抛物线
的顶点为
,与
轴的正半轴交于点
.
(1)将抛物线
上的点的横坐标和纵坐标都扩大到原来的2倍,求变换后得到的抛物线的解析式;
(2)将抛物线
上的点
变为
,
,变换后得到的抛物线记作
,抛物线
的顶点为
,点
在抛物线
上,满足
,且
.
①当
时,求
的值;
②当
时,请直接写出
的值,不必说明理由.

如图,抛物线
的顶点为
,与
轴的正半轴交于点
.
(1)将抛物线
上的点的横坐标和纵坐标都扩大到原来的2倍,求变换后得到的抛物线的解析式;
(2)将抛物线
上的点
变为
,
,变换后得到的抛物线记作
,抛物线
的顶点为
,点
在抛物线
上,满足
,且
.
①当
时,求
的值;
②当
时,请直接写出
的值,不必说明理由.

如图1,已知抛物线
与
轴交于点
,过点
的直线
与抛物线
交于另一点
,点
,
到直线
的距离相等.
(1)求直线
的表达式;
(2)将直线
向下平移
个单位,平移后的直线
与抛物线
交于点
,
(如图
,判断直线
是否平分线段
,并说明理由;
(3)已知抛物线
,
,
为常数)和直线
有两个交点
,
,对于任意满足条件的
,线段
都能被直线
平分,请直接写出
与
,
之间的数量关系.

已知抛物线
与
轴交于点
,与
轴的两个交点分别为
,
.
(1)求抛物线的解析式;
(2)已知点
在抛物线上,连接
,
,若
是以
为直角边的直角三角形,求点
的坐标;
(3)已知点
在
轴上,点
在抛物线上,是否存在以
,
,
,
为顶点的四边形是平行四边形?若存在,请直接写出点
的坐标;若不存在,请说明理由.

已知,抛物线
经过原点,顶点为
,
.
(1)当
,
时,求抛物线的解析式;
(2)若抛物线
也经过
点,求
与
之间的关系式;
(3)当点
在抛物线
上,且
时,求
的取值范围.
如图,在平面直角坐标系中,
为原点,四边形
是矩形,点
,
的坐标分别是
和
,点
是对角线
上一动点(不与
,
重合),连结
,作
,交
轴于点
,以线段
,
为邻边作矩形
.
(1)填空:点
的坐标为 ;
(2)是否存在这样的点
,使得
是等腰三角形?若存在,请求出
的长度;若不存在,请说明理由;
(3)①求证: ;
②设
,矩形
的面积为
,求
关于
的函数关系式(可利用①的结论),并求出
的最小值.

如图,抛物线
经过点
,
,交
轴于点
;
(1)求抛物线的解析式(用一般式表示);
(2)点
为
轴右侧抛物线上一点,是否存在点
使
?若存在请直接给出点
坐标;若不存在请说明理由;
(3)将直线
绕点
顺时针旋转
,与抛物线交于另一点
,求
的长.

如图,抛物线y=ax2+bx﹣4(a≠0)与x轴交于A(4,0)、B(﹣1,0)两点,过点A的直线y=﹣x+4交抛物线于点C.
(1)求此抛物线的解析式;
(2)在直线AC上有一动点E,当点E在某个位置时,使△BDE的周长最小,求此时E点坐标;
(3)当动点E在直线AC与抛物线围成的封闭线A→C→B→D→A上运动时,是否存在使△BDE为直角三角形的情况,若存在,请直接写出符合要求的E点的坐标;若不存在,请说明理由.

如图1,在平面直径坐标系中,抛物线y=ax2+bx﹣2与x轴交于点A(﹣3,0).B(1,0),与y轴交于点C
(1)直接写出抛物线的函数解析式;
(2)以OC为半径的⊙O与y轴的正半轴交于点E,若弦CD过AB的中点M,试求出DC的长;
(3)将抛物线向上平移
个单位长度(如图2)若动点P(x,y)在平移后的抛物线上,且点P在第三象限,请求出△PDE的面积关于x的函数关系式,并写出△PDE面积的最大值.

如图,矩形的边OA在x轴上,边OC在y轴上,点B的坐标为(10,8),沿直线OD折叠矩形,使点A正好落在BC上的E处,E点坐标为(6,8),抛物线y=ax2+bx+c经过O、A、E三点.
(1)求此抛物线的解析式;
(2)求AD的长;
(3)点P是抛物线对称轴上的一动点,当△PAD的周长最小时,求点P的坐标.

在平面直角坐标系中,抛物线y=﹣x2﹣2x+3与x轴交于A,B两点(A在B的左侧),与y轴交于点C,顶点为D.
(1)请直接写出点A,C,D的坐标;
(2)如图(1),在x轴上找一点E,使得△CDE的周长最小,求点E的坐标;
(3)如图(2),F为直线AC上的动点,在抛物线上是否存在点P,使得△AFP为等腰直角三角形?若存在,求出点P的坐标,若不存在,请说明理由.

如图1,已知开口向下的抛物线y1=ax2﹣2ax+1过点A(m,1),与y轴交于点C,顶点为B,将抛物线y1绕点C旋转180°后得到抛物线y2,点A,B的对应点分别为点D,E.
(1)直接写出点A,C,D的坐标;
(2)当四边形ABDE是矩形时,求a的值及抛物线y2的解析式;
(3)在(2)的条件下,连接DC,线段DC上的动点P从点D出发,以每秒1个单位长度的速度运动到点C停止,在点P运动的过程中,过点P作直线l⊥x轴,将矩形ABDE沿直线l折叠,设矩形折叠后相互重合部分面积为S平方单位,点P的运动时间为t秒,求S与t的函数关系.

试题篮
()