如图,抛物线 交 轴于 , 两点,交 轴于点 .直线 经过点 , .
(1)求抛物线的解析式;
(2)过点 的直线交直线 于点 .
①当 时,过抛物线上一动点 (不与点 , 重合),作直线 的平行线交直线 于点 ,若以点 , , , 为顶点的四边形是平行四边形,求点 的横坐标;
②连接 ,当直线 与直线 的夹角等于 的2倍时,请直接写出点 的坐标.
某班"数学兴趣小组"对函数 的图象和性质进行了探究,探究过程如下,请补充完整.
(1)自变量 的取值范围是全体实数, 与 的几组对应值列表如下:
|
|
|
|
|
|
0 |
1 |
2 |
|
3 |
|
|
|
3 |
|
|
|
0 |
|
0 |
|
3 |
|
其中, .
(2)根据表中数据,在如图所示的平面直角坐标系中描点,并画出了函数图象的一部分,请画出该函数图象的另一部分.
(3)观察函数图象,写出两条函数的性质.
(4)进一步探究函数图象发现:
①函数图象与 轴有 个交点,所以对应的方程 有 个实数根;
②方程 有 个实数根;
③关于 的方程 有4个实数根时, 的取值范围是 .
抛物线 经过 , ,交 轴于点 .
(1)求抛物线的解析式;
(2)如图1,点 为直线 上方抛物线上一个动点,连接 , .设 的面积为 ,点 的横坐标为 ,试求 关于 的函数解析式,并求出 的最大值;
(3)如图2,连接 ,点 为抛物线内一点,在抛物线上是否存在点 ,使直线 与 轴相交所成的锐角等于 ?若存在,请直接写出点 的横坐标;若不存在,请说明理由.
如图1,过点 的抛物线 与直线 交于点 .点 是线段 上一动点,过点 作 轴的垂线,垂足为点 ,交抛物线于点 .设 的面积为 ,点 的横坐标为 .
(1)请直接写出 的值及抛物线的解析式.
(2)为探究 最大时点 的位置,甲、乙两同学结合图形给出如下解析:
甲:借助 的长与三角形面积公式,求出 关于 的函数关系式,可确定点 的位置.
乙:当点 运动到点 或点 时, 的值可看作0,则当点 运动到 中点时, 最大,即 最大时,点 为 的中点.
请参考甲的方法求出 最大时点 的坐标,进而判断乙的猜想是否正确,并说明理由.
(3)拓展探究:如图2,直线 与任意抛物线相交于 、 两点, 是线段 上的一个动点,过点 作抛物线对称轴的平行线,交该抛物线于点 .当 的面积最大时,点 一定是线段 的中点吗?试作出判断并说明理由.
如图,抛物线 与 轴相交于 , 两点(点 在点 的左侧),与 轴相交于点 . 为抛物线上一点,横坐标为 ,且 .
(1)求此抛物线的解析式;
(2)当点 位于 轴下方时,求 面积的最大值;
(3)设此抛物线在点 与点 之间部分(含点 和点 最高点与最低点的纵坐标之差为 .
①求 关于 的函数解析式,并写出自变量 的取值范围;
②当 时,直接写出 的面积.
已知函数 为常数)
(1)当 ,
①点 在此函数图象上,求 的值;
②求此函数的最大值.
(2)已知线段 的两个端点坐标分别为 、 ,当此函数的图象与线段 只有一个交点时,直接写出 的取值范围.
(3)当此函数图象上有4个点到 轴的距离等于4,求 的取值范围.
《函数的图象与性质》拓展学习片段展示:
【问题】如图①,在平面直角坐标系中,抛物线 经过原点 ,与 轴的另一个交点为 ,则 .
【操作】将图①中抛物线在 轴下方的部分沿 轴折叠到 轴上方,将这部分图象与原抛物线剩余部分的图象组成的新图象记为 ,如图②.直接写出图象 对应的函数解析式.
【探究】在图②中,过点 作直线 平行于 轴,与图象 的交点从左至右依次为点 , , , ,如图③.求图象 在直线 上方的部分对应的函数 随 增大而增大时 的取值范围.
【应用】 是图③中图象 上一点,其横坐标为 ,连接 , .直接写出 的面积不小于1时 的取值范围.
定义:对于给定的两个函数,任取自变量 的一个值,当 时,它们对应的函数值互为相反数;当 时,它们对应的函数值相等,我们称这样的两个函数互为相关函数.例如:一次函数 ,它的相关函数为 .
(1)已知点 在一次函数 的相关函数的图象上,求 的值;
(2)已知二次函数 .①当点 在这个函数的相关函数的图象上时,求 的值;
②当 时,求函数 的相关函数的最大值和最小值;
(3)在平面直角坐标系中,点 , 的坐标分别为 , , , ,连结 .直接写出线段 与二次函数 的相关函数的图象有两个公共点时 的取值范围.
如图1,在平面直角坐标系中,点 在 轴正半轴上, 的长度为 ,以 为边向上作等边三角形 ,抛物线 经过点 , , 三点
(1)当 时, ,当 时, ;
(2)根据(1)中的结果,猜想 与 的关系,并证明你的结论;
(3)如图2,在图1的基础上,作 轴的平行线交抛物线 于 、 两点, 的长度为 ,当 为等腰直角三角形时, 和 的关系式为 ;
(4)利用(2)(3)中的结论,求 与 的面积比.
如图1和图2,在 中, , , .点 在 边上,点 , 分别在 , 上,且 .点 从点 出发沿折线 匀速移动,到达点 时停止;而点 在 边上随 移动,且始终保持 .
(1)当点 在 上时,求点 与点 的最短距离;
(2)若点 在 上,且 将 的面积分成上下 两部分时,求 的长;
(3)设点 移动的路程为 ,当 及 时,分别求点 到直线 的距离(用含 的式子表示);
(4)在点 处设计并安装一扫描器,按定角 扫描 区域(含边界),扫描器随点 从 到 再到 共用时36秒.若 ,请直接写出点 被扫描到的总时长.
如图,若 是正数,直线 与 轴交于点 ;直线 与 轴交于点 ;抛物线 的顶点为 ,且 与 轴右交点为 .
(1)若 ,求 的值,并求此时 的对称轴与 的交点坐标;
(2)当点 在 下方时,求点 与 距离的最大值;
(3)设 ,点 , , , , , 分别在 , 和 上,且 是 , 的平均数,求点 , 与点 间的距离;
(4)在 和 所围成的封闭图形的边界上,把横、纵坐标都是整数的点称为“美点”,分别直接写出 和 时“美点”的个数.
一次函数 与二次函数 的图象的一个交点坐标为 ,另一个交点是该二次函数图象的顶点.
(1)求 , , 的值;
(2)过点 , 且垂直于 轴的直线与二次函数 的图象相交于 , 两点,点 为坐标原点,记 ,求 关于 的函数解析式,并求 的最小值.
在平面直角坐标系 中,抛物线 与 轴交于点 ,将点 向右平移2个单位长度,得到点 ,点 在抛物线上.
(1)求点 的坐标(用含 的式子表示);
(2)求抛物线的对称轴;
(3)已知点 , , .若抛物线与线段 恰有一个公共点,结合函数图象,求 的取值范围.
在平面直角坐标系 中,直线 与 轴, 轴分别交于点 , ,抛物线 经过点 ,将点 向右平移5个单位长度,得到点 .
(1)求点 的坐标;
(2)求抛物线的对称轴;
(3)若抛物线与线段 恰有一个公共点,结合函数图象,求 的取值范围.
试题篮
()