二次函数 的部分图象如图所示,图象过点 ,对称轴为直线 ,下列结论:
① ② ③ ④当 时,
其中正确的结论有
A. |
1个 |
B. |
2个 |
C. |
3个 |
D. |
4个 |
如图,已知二次函数的图象经过点.
(1)求的值和图象的顶点坐标.
(2)点在该二次函数图象上.
①当时,求的值;
②若点到轴的距离小于2,请根据图象直接写出的取值范围.
抛物线与轴交于点,(点在点的左边),与轴交于点,点是该抛物线的顶点.
(1)如图1,连接,求线段的长;
(2)如图2,点是直线上方抛物线上一点,轴于点,与线段交于点;将线段沿轴左右平移,线段的对应线段是,当的值最大时,求四边形周长的最小值,并求出对应的点的坐标;
(3)如图3,点是线段的中点,连接,将沿直线翻折至△的位置,再将△绕点旋转一周,在旋转过程中,点,的对应点分别是点,,直线分别与直线,轴交于点,.那么,在△的整个旋转过程中,是否存在恰当的位置,使是以为腰的等腰三角形?若存在,请直接写出所有符合条件的线段的长;若不存在,请说明理由.
如图,在平面直角坐标系中,点在抛物线上,且横坐标为1,点与点关于抛物线的对称轴对称,直线与轴交于点,点为抛物线的顶点,点的坐标为.
(1)求线段的长;
(2)点为线段上方抛物线上的任意一点,过点作的垂线交于点,点为轴上一点,当的面积最大时,求的最小值;
(3)在(2)中,取得最小值时,将绕点顺时针旋转后得到△,过点作的垂线与直线交于点,点为抛物线对称轴上的一点,在平面直角坐标系中是否存在点,使以点,,,为顶点的四边形为菱形,若存在,请直接写出点的坐标,若不存在,请说明理由.
已知是常数,抛物线的对称轴是轴,并且与轴有两个交点.
(1)求的值;
(2)若点在物线上,且到轴的距离是2,求点的坐标.
如图,抛物线过点,对称轴是直线,且抛物线与轴的正半轴交于点.
(1)求抛物线的解析式,并根据图象直接写出当时,自变量的取值范围;
(2)在第二象限内的抛物线上有一点,当时,求的面积.
已知抛物线,为常数,经过点,点是轴正半轴上的动点.
(Ⅰ)当时,求抛物线的顶点坐标;
(Ⅱ)点在抛物线上,当,时,求的值;
(Ⅲ)点,在抛物线上,当的最小值为时,求的值.
二次函数 , , 是常数, 的自变量 与函数值 的部分对应值如下表:
|
|
|
|
0 |
1 |
2 |
|
|
|
|
|
|
|
|
|
且当 时,与其对应的函数值 .有下列结论:
① ;② 和3是关于 的方程 的两个根;③ .
其中,正确结论的个数是
A. |
0 |
B. |
1 |
C. |
2 |
D. |
3 |
已知在平面直角坐标系中(如图),已知抛物线经过点,对称轴是直线,顶点为.
(1)求这条抛物线的表达式和点的坐标;
(2)点在对称轴上,且位于顶点上方,设它的纵坐标为,联结,用含的代数式表示的余切值;
(3)将该抛物线向上或向下平移,使得新抛物线的顶点在轴上.原抛物线上一点平移后的对应点为点,如果,求点的坐标.
如图,已知抛物线与轴交于、两点.与轴交于点.且,.
(1)求抛物线的函数表达式;
(2)在抛物线的对称轴上是否存在一点,使周长最小?若存在,求出点的坐标;若不存在,请说明理由.
(3)连接、,在抛物线上是否存在一点,使?若存在,求出点的坐标;若不存在,请说明理由.
已知抛物线.
(1)当时,求抛物线与轴的交点坐标及对称轴;
(2)①试说明无论为何值,抛物线一定经过两个定点,并求出这两个定点的坐标;
②将抛物线沿这两个定点所在直线翻折,得到抛物线,直接写出的表达式;
(3)若(2)中抛物线的顶点到轴的距离为2,求的值.
如图,直线与轴交于点,与轴交于点,抛物线经过点,.
(1)求点的坐标和抛物线的解析式;
(2)为轴上一动点,过点且垂直于轴的直线与直线及抛物线分别交于点,.
①点在线段上运动,若以,,为顶点的三角形与相似,求点的坐标;
②点在轴上自由运动,若三个点,,中恰有一点是其它两点所连线段的中点(三点重合除外),则称,,三点为“共谐点”.请直接写出使得,,三点成为“共谐点”的的值.
试题篮
()