如图,已知抛物线 与直线 交于 、 两点,点 是抛物线上 、 之间的一个动点,过点 分别作 轴、 轴的平行线与直线 交于点 和点 .
(1)求抛物线的解析式;
(2)若 为 中点,求 的长;
(3)如图,以 , 为边构造矩形 ,设点 的坐标为 ,请求出 , 之间的关系式.
如图,抛物线经过 , , 三点.
(Ⅰ)求抛物线的解析式;
(Ⅱ)在抛物线的对称轴上有一点 ,使 的值最小,求点 的坐标.
(Ⅲ)点 为 轴上一动点,在抛物线上是否存在一点 ,使以 , , , 四点构成的四边形为平行四边形?若存在,求点 的坐标;若不存在,请说明理由.
如图,直线 与 轴、 轴分别交于 , 两点,抛物线 与直线 分别交 轴的正半轴于点 和第一象限的点 ,连接 ,得 为坐标原点).若抛物线与 轴正半轴交点为点 ,设 是点 , 间抛物线上的一点(包括端点),其横坐标为 .
(1)直接写出点 的坐标和抛物线的解析式;
(2)当 为何值时, 面积 取得最小值和最大值?请说明理由;
(3)求满足 的点 的坐标.
如图,抛物线 与 轴交于 、 两点, 是 轴上一点,连接 ,延长 交抛物线于点 .
(1)求此抛物线的解析式;
(2)若 点在第一象限,过点 作 轴于点 , 与 的面积比为 ,求出点 的坐标;
(3)若 是 轴上的动点,过 点作与 轴平行的直线交抛物线于 、 两点,是否存在点 ,使 ?若存在,请求出点 的坐标;若不存在,请说明理由.
已知二次函数: .
(1)求证:二次函数的图象与 轴有两个交点;
(2)当二次函数的图象与 轴的两个交点的横坐标均为整数,且 为负整数时,求 的值及二次函数的解析式并画出二次函数的图象(不用列表,只要求用其与 轴的两个交点 , 在 的左侧),与 轴的交点 及其顶点 这四点画出二次函数的大致图象,同时标出 , , , 的位置);
(3)在(2)的条件下,二次函数的图象上是否存在一点 使 ?如果存在,求出点 的坐标;如果不存在,请说明理由.
如果抛物线 的顶点在拋物线 上,抛物线 的顶点也在拋物线 上时,那么我们称抛物线 与 “互为关联”的抛物线.如图1,已知抛物线 与 是“互为关联”的拋物线,点 , 分别是抛物线 , 的顶点,抛物线 经过点 .
(1)直接写出 , 的坐标和抛物线 的解析式;
(2)抛物线 上是否存在点 ,使得 是直角三角形?如果存在,请求出点 的坐标;如果不存在,请说明理由;
(3)如图2,点 在抛物线 上,点 , 分别是抛物线 , 上的动点,且点 , 的横坐标相同,记 面积为 (当点 与点 , 重合时 , 的面积为 (当点 与点 , 重合时, ,令 ,观察图象,当 时,写出 的取值范围,并求出在此范围内 的最大值.
如图,直线 交 轴于点 ,交 轴于点 ,点 的坐标为 ,抛物线 经过 , , 三点,抛物线的顶点为点 ,对称轴与 轴的交点为点 ,点 关于原点的对称点为 ,连接 ,以点 为圆心, 的长为半径作圆,点 为直线 上的一个动点.
(1)求抛物线的解析式;
(2)求 周长的最小值;
(3)若动点 与点 不重合,点 为 上的任意一点,当 的最大值等于 时,过 , 两点的直线与抛物线交于 , 两点(点 在点 的左侧),求四边形 的面积.
已知抛物线 和直线 都经过点 ,点 为坐标原点,点 为抛物线上的动点,直线 与 轴、 轴分别交于 、 两点.
(1)求 、 的值;
(2)当 是以 为底边的等腰三角形时,求点 的坐标;
(3)满足(2)的条件时,求 的值.
如图,已知抛物线过点 , , .
(1)求抛物线的解析式;
(2)在图甲中,点 是抛物线 段上的一个动点,当图中阴影部分的面积最小值时,求点 的坐标;
(3)在图乙中,点 和点 关于抛物线的对称轴对称,点 在抛物线上,且 ,求点 的横坐标.
如图,在平面直角坐标系中, 为等腰直角三角形, ,抛物线 经过 , 两点,其中点 , 的坐标分别为 , ,抛物线的顶点为点 .
(1)求抛物线的解析式;
(2)点 是直角三角形 斜边 上的一个动点(不与 , 重合),过点 作 轴的垂线,交抛物线于点 ,当线段 的长度最大时,求点 的坐标;
(3)在(2)的条件下,抛物线上是否存在一点 ,使 是以 为直角边的直角三角形?若存在,求出所有点 的坐标;若不存在,请说明理由.
已知抛物线 与 轴交于点 和点 .
(1)求抛物线 的函数解析式;
(2)如图①,将抛物线 沿 轴翻折得到抛物线 ,抛物线 与 轴交于点 ,点 是线段 上的一个动点,过点 作 轴交抛物线 于点 ,求线段 的长度的最大值;
(3)在(2)的条件下,当线段 处于长度最大值位置时,作线段 的垂直平分线交 于点 ,垂足为 ,点 是抛物线 上一动点, 与直线 相切,且 ,求满足条件的所有点 的坐标.
如图,已知抛物线 与坐标轴交于 , , 三点,其中 , 的平分线 交 轴于点 ,交 于点 ,过点 的直线 与射线 , 分别交于点 , .
(1)直接写出 的值、点 的坐标及抛物线的对称轴;
(2)点 为抛物线的对称轴上一动点,若 为等腰三角形,求出点 的坐标;
(3)证明:当直线 绕点 旋转时, 均为定值,并求出该定值.
如图,已知抛物线 经过点 、 和 , 垂直于 轴,交抛物线于点 , 垂直于 轴,垂足为 ,直线 是该抛物线的对称轴,点 是抛物线的顶点.
(1)求出该二次函数的表达式及点 的坐标;
(2)若 沿 轴向右平移,使其直角边 与对称轴 重合,再沿对称轴 向上平移到点 与点 重合,得到 △ ,求此时 △ 与矩形 重叠部分图形的面积;
(3)若 沿 轴向右平移 个单位长度 得到 △ , △ 与 重叠部分图形的面积记为 ,求 与 之间的函数表达式,并写出自变量 的取值范围.
如图,抛物线 交 轴于 , 两点,与 轴交于点 ,连接 , .点 是第一象限内抛物线上的一个动点,点 的横坐标为 .
(1)求此抛物线的表达式;
(2)过点 作 轴,垂足为点 , 交 于点 .试探究点 在运动过程中,是否存在这样的点 ,使得以 , , 为顶点的三角形是等腰三角形.若存在,请求出此时点 的坐标,若不存在,请说明理由;
(3)过点 作 ,垂足为点 .请用含 的代数式表示线段 的长,并求出当 为何值时 有最大值,最大值是多少?
试题篮
()