已知抛物线与轴有两个不同的交点.
(1)求的取值范围;
(2)若抛物线经过点和点,试比较与的大小,并说明理由.
在平面直角坐标系中,已知 ,设函数 的图象与 轴有 个交点,函数 的图象与 轴有 个交点,则
A. |
或 |
B. |
或 |
C. |
或 |
D. |
或 |
已知是常数,抛物线的对称轴是轴,并且与轴有两个交点.
(1)求的值;
(2)若点在物线上,且到轴的距离是2,求点的坐标.
已知二次函数的图象经过,两点.
(1)求,的值.
(2)二次函数的图象与轴是否有公共点?若有,求公共点的坐标;若没有,请说明情况.
已知二次函数图象的顶点坐标为,该二次函数图象的对称轴与轴的交点为,是这个二次函数图象上的点,是原点.
(1)不等式是否成立?请说明理由;
(2)设是的面积,求满足的所有点的坐标.
已知抛物线 , , 为常数, 经过点 , ,其对称轴在 轴右侧.有下列结论:
①抛物线经过点 ;
②方程 有两个不相等的实数根;
③
其中,正确结论的个数为
A. |
0 |
B. |
1 |
C. |
2 |
D. |
3 |
综合与探究
如图,抛物线与轴交于,两点(点在点的左侧),与轴交于点,连接,.点是第四象限内抛物线上的一个动点,点的横坐标为,过点作轴,垂足为点,交于点,过点作交轴于点,交于点.
(1)求,,三点的坐标;
(2)试探究在点运动的过程中,是否存在这样的点,使得以,,为顶点的三角形是等腰三角形.若存在,请直接写出此时点的坐标;若不存在,请说明理由;
(3)请用含的代数式表示线段的长,并求出为何值时有最大值.
已知抛物线与轴相交于、两点(点在点的左侧),并与轴相交于点.
(1)求、、三点的坐标,并求的面积;
(2)将抛物线向左或向右平移,得到抛物线,且与轴相交于、两点(点在点的左侧),并与轴相交于点,要使△和的面积相等,求所有满足条件的抛物线的函数表达式.
对于抛物线 ,当 时, ,则这条抛物线的顶点一定在
A. |
第一象限 |
B. |
第二象限 |
C. |
第三象限 |
D. |
第四象限 |
已知抛物线与轴相交于和两点,并与轴相交于点.抛物线与关于坐标原点对称,点、在上的对应点分别为、
(1)求抛物线的函数表达式;
(2)在抛物线上是否存在点,使得△的面积等于△的面积?若存在,求点的坐标;若不存在,请说明理由.
在同一直角坐标系中,抛物线与抛物线关于轴对称,与轴交于、两点,其中点在点的左侧.
(1)求抛物线,的函数表达式;
(2)求、两点的坐标;
(3)在抛物线上是否存在一点,在抛物线上是否存在一点,使得以为边,且以、、、四点为顶点的四边形是平行四边形?若存在,求出、两点的坐标;若不存在,请说明理由.
已知抛物线 的对称轴为 ,且它与 轴交于 、 两点.若 的长是6,则该抛物线的顶点坐标为
A. |
|
B. |
|
C. |
|
D. |
|
在平面直角坐标系中,点 为坐标原点,抛物线 经过点 和
(1)试判断该抛物线与 轴交点的情况;
(2)平移这条抛物线,使平移后的抛物线经过点 ,且与 轴交于点 ,同时满足以 、 、 为顶点的三角形是等腰直角三角形,请你写出平移过程,并说明理由.
已知抛物线 与 轴交于 、 两点,将这条抛物线的顶点记为 ,连接 、 ,则 的值为
A. |
|
B. |
|
C. |
|
D. |
2 |
试题篮
()