在等腰 中, , 是直角三角形, , ,连接 、 ,点 是 的中点,连接 .
(1)当 ,点 在边 上时,如图①所示,求证: ;
(2)当 ,把 绕点 逆时针旋转,顶点 落在边 上时,如图②所示,当 ,点 在边 上时,如图③所示,猜想图②、图③中线段 和 又有怎样的数量关系?请直接写出你的猜想,不需证明.
已知点 是正方形 对角线 的中点.
(1)如图1,若点 是 的中点,点 是 上一点,且使得 ,过点 作 ,交 于点 ,交 于点 .求证:
① ; ②点 是 的中点;
(2)如图2,若点 是 上一点,点 是 上一点,且使 ,请判断 的形状,并说明理由;
(3)如图3,若 是 上的动点(不与 , 重合),连接 ,过 点作 ,交 于点 ,当 时,请猜想 的值(请直接写出结论).
如图,已知 是等边三角形, 是 内部的一点,连接 , .
(1)如图1,以 为直径的半圆 交 于点 ,交 于点 ,当点 在 上时,连接 ,在 边的下方作 , ,连接 ,求 的度数;
(2)如图2, 是 边上一点,且 ,当 时,连接 并延长,交 于点 ,若 ,求证: ;
(3)如图3, 是 边上一点,当 时,连接 .若 , , , 的面积为 , 的面积为 ,求 的值(用含 的代数式表示).
如图,正方形 的边长为1,点 为边 上一动点,连接 并将其绕点 顺时针旋转 得到 ,连接 ,以 、 为邻边作矩形 , 与 、 分别交于点 、 , 交 延长线于点 .
(1)证明:点 、 、 在同一条直线上;
(2)随着点 的移动,线段 是否有最小值?若有,求出最小值;若没有,请说明理由;
(3)连接 、 ,当 时,求 的长.
如图1,在正方形 中,点 是边 上一点,且点 不与点 、 重合,点 是 的延长线上一点,且 .
(1)求证: ;
(2)如图2,连接 ,交 于点 ,过点 作 ,垂足为 ,延长 交 于点 ,连接 , .
①求证: ;
②若 ,求 的长.
如图, 在平面直角坐标系中, 把矩形 沿对角线 所在直线折叠, 点 落在点 处, 与 轴相交于点 ,矩形 的边 , 的长是关于 的一元二次方程 的两个根, 且 .
(1) 求线段 , 的长;
(2) 求证: ,并求出线段 的长;
(3) 直接写出点 的坐标;
(4) 若 是直线 上一个动点, 在坐标平面内是否存在点 ,使以点 , , , 为顶点的四边形是菱形?若存在, 请直接写出 点的坐标;若不存在, 请说明理由 .
如图,在 中, 是直径, 是弦, ,垂足为 ,过点 的 的切线与 延长线交于点 ,连接 .
(1)求证: 为 的切线;
(2)若 半径为3, ,求 .
已知: 是等腰直角三角形, ,将 绕点 顺时针方向旋转得到△ ,记旋转角为 ,当 时,作 ,垂足为 , 与 交于点 .
(1)如图1,当 时,作 的平分线 交 于点 .
①写出旋转角 的度数;
②求证: ;
(2)如图2,在(1)的条件下,设 是直线 上的一个动点,连接 , ,若 ,求线段 的最小值.(结果保留根号)
如图, 、 分别是正方形 的边 、 上的动点,满足 ,连接 、 ,相交于点 ,连接 ,若正方形的边长为2.则线段 的最小值为 .
在 中, , 是边 上一动点,连接 ,将 绕点 逆时针旋转至 的位置,使得 .
(1)如图1,当 时,连接 ,交 于点 .若 平分 , ,求 的长;
(2)如图2,连接 ,取 的中点 ,连接 .猜想 与 存在的数量关系,并证明你的猜想;
(3)如图3,在(2)的条件下,连接 , .若 ,当 , 时,请直接写出 的值.
【证明体验】
(1)如图1, 为 的角平分线, ,点 在 上, .求证: 平分 .
【思考探究】
(2)如图2,在(1)的条件下, 为 上一点,连结 交 于点 .若 , , ,求 的长.
【拓展延伸】
(3)如图3,在四边形 中,对角线 平分 , ,点 在 上, .若 , , ,求 的长.
已知 的三个顶点都是同一个正方形的顶点, 的平分线与线段 交于点 .若 的一条边长为6,则点 到直线 的距离为 .
在等腰 中, ,点 是 边上一点(不与点 、 重合),连结 .
(1)如图1,若 ,点 关于直线 的对称点为点 ,连结 , ,则 ;
(2)若 ,将线段 绕点 顺时针旋转 得到线段 ,连结 .
①在图2中补全图形;
②探究 与 的数量关系,并证明;
(3)如图3,若 ,且 .试探究 、 、 之间满足的数量关系,并证明.
在 中, , 平分 ,交对角线 于点 ,交射线 于点 ,将线段 绕点 顺时针旋转 得线段 .
(1)如图1,当 时,连接 ,请直接写出线段 和线段 的数量关系;
(2)如图2,当 时,过点 作 于点,连接 ,请写出线段 , , 之间的数量关系,并说明理由;
(3)当 时,连接 ,若 ,请直接写出 与 面积的比值.
试题篮
()