已知矩形 的一条边 ,将矩形 折叠,使得顶点 落在 边上的 点处
(Ⅰ)如图1,已知折痕与边 交于点 ,连接 、 、 .若 与 的面积比为 ,求边 的长.
(Ⅱ)如图2,在(Ⅰ)的条件下,擦去折痕 、线段 ,连接 .动点 在线段 上(点 与点 、 不重合),动点 在线段 的延长线上,且 ,连接 交 于点 ,作 于点 .试问当动点 、 在移动的过程中,线段 的长度是否发生变化?若变化,说明变化规律.若不变,求出线段 的长度.
如图, 中, ,将 绕点 顺时针旋转得到 ,点 落在线段 上,连接 .
(1)求证: 平分 ;
(2)试判断 与 的位置关系,并说明理由;
(3)若 ,求 的值.
如图,正方形 的对角线交于点 ,点 、 分别在 、 上 ,且 , 、 的延长线交于点 , 、 的延长线交于点 ,连接 .
(1)求证: .
(2)若正方形 的边长为4, 为 的中点,求 的长.
如图1,在 中, , ,点 , 分别在边 , 上,且 ,连接 .现将 绕点 顺时针方向旋转,旋转角为 ,如图2,连接 , , .
(1)当 时,求证: ;
(2)如图3,当 时,延长 交 于点 ,求证: 垂直平分 ;
(3)在旋转过程中,求 的面积的最大值,并写出此时旋转角 的度数.
如图, 是 的直径, 切 于点 ,连接 ,作 交 于点 , 的延长线与 的延长线交于点 .
(1)求证: 是 的切线;
(2)若 的半径为1, ,求 的长.
如图,线段 ,射线 , 为射线 上一点,以 为边作正方形 ,且点 、 与点 在 两侧,在线段 上取一点 ,使 ,直线 与线段 相交于点 (点 与点 、 不重合).
(1)求证: ;
(2)判断 与 的位置关系,并说明理由;
(3)求 的周长.
如图, 、 分别是 的直径和弦, 于点 .过点 作 的切线与 的延长线交于点 , 、 的延长线交于点 .
(1)求证: 是 的切线;
(2)若 , ,求线段 的长.
如图,在 中, , 是对角线 上的两点(点 在点 左侧),且 .
(1)求证:四边形 是平行四边形;
(2)当 , , 时,求 的长.
如图,在 中, , 与 相切于点 ,过点 作 的垂线交 的延长线于点 ,交 于点 ,连结 .
(1)求证: 是 的切线.
(2)若 , ,求 的长.
如图, 为等腰直角三角形,延长 至点 使 , 是矩形,其对角线 , 交于点 ,连接 交 于点 .
(1)求证: ;
(2)求 的值.
如图,在 中,过 点作 于点 ,交 于点 ,过 点作 于点 ,交 于点 .
(1)求证:四边形 是平行四边形;
(2)已知 , ,求 的长.
试题篮
()