优题课 - 聚名师,上好课(www.youtike.com)
  首页 / 试题库 / 初中数学试题 / 全等三角形的判定与性质 / 解答题
初中数学

已知矩形 ABCD 的一条边 AD = 8 ,将矩形 ABCD 折叠,使得顶点 B 落在 CD 边上的 P 点处

(Ⅰ)如图1,已知折痕与边 BC 交于点 O ,连接 AP OP OA .若 ΔOCP ΔPDA 的面积比为 1 : 4 ,求边 CD 的长.

(Ⅱ)如图2,在(Ⅰ)的条件下,擦去折痕 AO 、线段 OP ,连接 BP .动点 M 在线段 AP 上(点 M 与点 P A 不重合),动点 N 在线段 AB 的延长线上,且 BN = PM ,连接 MN PB 于点 F ,作 ME BP 于点 E .试问当动点 M N 在移动的过程中,线段 EF 的长度是否发生变化?若变化,说明变化规律.若不变,求出线段 EF 的长度.

来源:2016年四川省自贡市中考数学试卷
  • 题型:未知
  • 难度:未知

如图, Rt Δ ABC 中, ACB = 90 ° ,将 ΔABC 绕点 C 顺时针旋转得到 ΔDEC ,点 D 落在线段 AB 上,连接 BE

(1)求证: DC 平分 ADE

(2)试判断 BE AB 的位置关系,并说明理由;

(3)若 BE = BD ,求 tan ABC 的值.

来源:2020年四川省甘孜州中考数学试卷
  • 题型:未知
  • 难度:未知

如图,正方形 ABCD 的对角线交于点 O ,点 E F 分别在 AB BC ( AE < BE ) ,且 EOF = 90 ° OE DA 的延长线交于点 M OF AB 的延长线交于点 N ,连接 MN

(1)求证: OM = ON

(2)若正方形 ABCD 的边长为4, E OM 的中点,求 MN 的长.

来源:2018年贵州省遵义市中考数学试卷
  • 题型:未知
  • 难度:未知

如图1,在 ΔABC 中, A = 90 ° AB = AC = 2 + 1 ,点 D E 分别在边 AB AC 上,且 AD = AE = 1 ,连接 DE .现将 ΔADE 绕点 A 顺时针方向旋转,旋转角为 α ( 0 ° < α < 360 ° ) ,如图2,连接 CE BD CD

(1)当 0 ° < α < 180 ° 时,求证: CE = BD

(2)如图3,当 α = 90 ° 时,延长 CE BD 于点 F ,求证: CF 垂直平分 BD

(3)在旋转过程中,求 ΔBCD 的面积的最大值,并写出此时旋转角 α 的度数.

来源:2020年山东省潍坊市中考数学试卷
  • 题型:未知
  • 难度:未知

如图, CE O 的直径, BC O 于点 C ,连接 OB ,作 ED / / OB O 于点 D BD 的延长线与 CE 的延长线交于点 A

(1)求证: AB O 的切线;

(2)若 O 的半径为1, tan DEO = 2 ,求 AE 的长.

来源:2018年贵州省黔东南州中考数学试卷
  • 题型:未知
  • 难度:未知

如图,线段 AB = 8 ,射线 BG AB P 为射线 BG 上一点,以 AP 为边作正方形 APCD ,且点 C D 与点 B AP 两侧,在线段 DP 上取一点 E ,使 EAP = BAP ,直线 CE 与线段 AB 相交于点 F (点 F 与点 A B 不重合).

(1)求证: ΔAEP ΔCEP

(2)判断 CF AB 的位置关系,并说明理由;

(3)求 ΔAEF 的周长.

来源:2019年江苏省泰州市中考数学试卷
  • 题型:未知
  • 难度:未知

如图, AB AC 分别是 O 的直径和弦, OD AC 于点 D .过点 A O 的切线与 OD 的延长线交于点 P PC AB 的延长线交于点 F

(1)求证: PC O 的切线;

(2)若 ABC = 60 ° AB = 10 ,求线段 CF 的长.

来源:2018年江苏省宿迁市中考数学试卷
  • 题型:未知
  • 难度:未知

如图,在 ABCD 中, E F 是对角线 BD 上的两点(点 E 在点 F 左侧),且 AEB = CFD = 90 °

(1)求证:四边形 AECF 是平行四边形;

(2)当 AB = 5 tan ABE = 3 4 CBE = EAF 时,求 BD 的长.

来源:2021年浙江省温州市中考数学试卷
  • 题型:未知
  • 难度:未知

如图,在 ΔABC 中, CA = CB BC A 相切于点 D ,过点 A AC 的垂线交 CB 的延长线于点 E ,交 A 于点 F ,连结 BF

(1)求证: BF A 的切线.

(2)若 BE = 5 AC = 20 ,求 EF 的长.

来源:2021年浙江省衢州市中考数学试卷
  • 题型:未知
  • 难度:未知

如图, ΔOAD 为等腰直角三角形,延长 OA 至点 B 使 OB = OD ABCD 是矩形,其对角线 AC BD 交于点 E ,连接 OE AD 于点 F

(1)求证: ΔOAF ΔDAB

(2)求 DF AF 的值.

来源:2021年四川省雅安市中考数学试卷
  • 题型:未知
  • 难度:未知

如图, BD / / AC BD = BC ,点 E BC 上,且 BE = AC .求证: D = ABC

来源:2021年陕西省中考数学试卷
  • 题型:未知
  • 难度:未知

已知:如图,四边形 ABCD 为平行四边形,点 E A C F 在同一直线上, AE = CF

求证:(1) ΔADE ΔCBF

(2) ED / / BF

来源:2021年湖南省怀化市中考数学试卷
  • 题型:未知
  • 难度:未知

如图,已知 AD = BC BD = AC .求证: ADB = BCA

来源:2020年云南省中考数学试卷
  • 题型:未知
  • 难度:未知

如图,在 ABCD 中,过 B 点作 BM AC 于点 E ,交 CD 于点 M ,过 D 点作 DN AC 于点 F ,交 AB 于点 N

(1)求证:四边形 BMDN 是平行四边形;

(2)已知 AF = 12 EM = 5 ,求 AN 的长.

来源:2018年四川省巴中市中考数学试卷
  • 题型:未知
  • 难度:未知

在菱形 ABCD 中,点 E 为对角线 BD 上一点,点 F G 在直线 BC 上,且 BE = EG AEF = BEG

(1)如图1,求证: ΔABE ΔFGE

(2)如图2,当 ABC = 120 ° 时,求证: AB = BE + BF

(3)如图3,当 ABC = 90 ° ,点 F 在线段 BC 上时,线段 AB BE BF 的数量关系如何?(请直接写出你猜想的结论)

来源:2017年辽宁省阜新市中考数学试卷
  • 题型:未知
  • 难度:未知

初中数学全等三角形的判定与性质解答题