优题课 - 聚名师,上好课(www.youtike.com)
  首页 / 试题库 / 初中数学试题 / 全等三角形的判定与性质 / 解答题
初中数学

如图, AB O 的直径, AM BN 是它的两条切线,过 O 上一点 E 作直线 DC ,分别交 AM BN 于点 D C ,且 DA = DE

(1)求证:直线 CD O 的切线;

(2)求证: O A 2 = DE · CE

来源:2020年山东省滨州市中考数学试卷
  • 题型:未知
  • 难度:未知

如图,过 ABCD 对角线 AC BD 的交点 E 作两条互相垂直的直线,分别交边 AB BC CD DA 于点 P M Q N

(1)求证: ΔPBE ΔQDE

(2)顺次连接点 P M Q N ,求证:四边形 PMQN 是菱形.

来源:2020年山东省滨州市中考数学试卷
  • 题型:未知
  • 难度:未知

如图,在 ΔABC ΔDCE 中, AC = DE B = DCE = 90 ° ,点 A C D 依次在同一直线上,且 AB / / DE

(1)求证: ΔABC ΔDCE

(2)连结 AE ,当 BC = 5 AC = 12 时,求 AE 的长.

来源:2020年浙江省温州市中考数学试卷
  • 题型:未知
  • 难度:未知

如图,已知 AB = AC AD = AE BD CE 相交于点 O

(1)求证: ΔABD ΔACE

(2)判断 ΔBOC 的形状,并说明理由.

来源:2020年浙江省台州市中考数学试卷
  • 题型:未知
  • 难度:未知

如图,点 E ABCD 的边 CD 的中点,连结 AE 并延长,交 BC 的延长线于点 F

(1)若 AD 的长为2,求 CF 的长.

(2)若 BAF = 90 ° ,试添加一个条件,并写出 F 的度数.

来源:2020年浙江省绍兴市中考数学试卷
  • 题型:未知
  • 难度:未知

如图,在 ΔABC 中, AB = 4 2 B = 45 ° C = 60 °

(1)求 BC 边上的高线长.

(2)点 E 为线段 AB 的中点,点 F 在边 AC 上,连结 EF ,沿 EF ΔAEF 折叠得到 ΔPEF

①如图2,当点 P 落在 BC 上时,求 AEP 的度数.

②如图3,连结 AP ,当 PF AC 时,求 AP 的长.

来源:2020年浙江省金华市中考数学试卷
  • 题型:未知
  • 难度:未知

在一次数学研究性学习中,小兵将两个全等的直角三角形纸片 ABC DEF 拼在一起,使点 A 与点 F 重合,点 C 与点 D 重合(如图 1 ) ,其中 ACB = DFE = 90 ° BC = EF = 3 cm AC = DF = 4 cm ,并进行如下研究活动.

活动一:将图1中的纸片 DEF 沿 AC 方向平移,连结 AE BD (如图 2 ) ,当点 F 与点 C 重合时停止平移.

[思考]图2中的四边形 ABDE 是平行四边形吗?请说明理由.

[发现]当纸片 DEF 平移到某一位置时,小兵发现四边形 ABDE 为矩形(如图 3 ) .求 AF 的长.

活动二:在图3中,取 AD 的中点 O ,再将纸片 DEF 绕点 O 顺时针方向旋转 α ( 0 α 90 ) ,连结 OB OE (如图 4 )

[探究]当 EF 平分 AEO 时,探究 OF BD 的数量关系,并说明理由.

来源:2020年浙江省嘉兴市中考数学试卷
  • 题型:未知
  • 难度:未知

如图,在正方形 ABCD 中,点 E BC 边上,连接 AE DAE 的平分线 AG CD 边交于点 G ,与 BC 的延长线交于点 F .设 CE EB = λ ( λ > 0 )

(1)若 AB = 2 λ = 1 ,求线段 CF 的长.

(2)连接 EG ,若 EG AF

①求证:点 G CD 边的中点.

②求 λ 的值.

来源:2020年浙江省杭州市中考数学试卷
  • 题型:未知
  • 难度:未知

如图, AB 是半圆 O 的直径, C D 是半圆 O 上不同于 A B 的两点, AD = BC AC BD 相交于点 F BE 是半圆 O 所在圆的切线,与 AC 的延长线相交于点 E

(1)求证: ΔCBA ΔDAB

(2)若 BE = BF ,求证: AC 平分 DAB

来源:2020年安徽省中考数学试卷
  • 题型:未知
  • 难度:未知

如图, ΔADE ΔABC 绕点 A 按逆时针方向旋转 90 ° 得到,且点 B 的对应点 D 恰好落在 BC 的延长线上, AD EC 相交于点 P

(1)求 BDE 的度数;

(2) F EC 延长线上的点,且 CDF = DAC

①判断 DF PF 的数量关系,并证明;

②求证: EP PF = PC CF

来源:2020年福建省中考数学试卷
  • 题型:未知
  • 难度:未知

如图, AB O 相切于点 B AO O 于点 C AO 的延长线交 O 于点 D E BCD ̂ 上不与 B D 重合的点, sin A = 1 2

(1)求 BED 的大小;

(2)若 O 的半径为3,点 F AB 的延长线上,且 BF = 3 3 ,求证: DF O 相切.

来源:2020年福建省中考数学试卷
  • 题型:未知
  • 难度:未知

如图,点 E F 分别在菱形 ABCD 的边 BC CD 上,且 BE = DF .求证: BAE = DAF

来源:2020年福建省中考数学试卷
  • 题型:未知
  • 难度:未知

四边形 ABCD 是边长为2的正方形, E AB 的中点,连结 DE ,点 F 是射线 BC 上一动点(不与点 B 重合),连结 AF ,交 DE 于点 G

(1)如图1,当点 F BC 边的中点时,求证: ΔABF ΔDAE

(2)如图2,当点 F 与点 C 重合时,求 AG 的长;

(3)在点 F 运动的过程中,当线段 BF 为何值时, AG = AE ?请说明理由.

来源:2020年海南省中考数学试卷
  • 题型:未知
  • 难度:未知

小亮在学习中遇到这样一个问题:

如图,点 D BC ̂ 上一动点,线段 BC = 8 cm ,点 A 是线段 BC 的中点,过点 C CF / / BD ,交 DA 的延长线于点 F .当 ΔDCF 为等腰三角形时,求线段 BD 的长度.

小亮分析发现,此问题很难通过常规的推理计算彻底解决,于是尝试结合学习函数的经验研究此问题.请将下面的探究过程补充完整:

(1)根据点 D BC ̂ 上的不同位置,画出相应的图形,测量线段 BD CD FD 的长度,得到下表的几组对应值.

BD / cm

0

1.0

2.0

3.0

4.0

5.0

6.0

7.0

8.0

CD / cm

8.0

7.7

7.2

6.6

5.9

a

3.9

2.4

0

FD / cm

8.0

7.4

6.9

6.5

6.1

6.0

6.2

6.7

8.0

操作中发现:

①“当点 D BC ̂ 的中点时, BD = 5 . 0 cm ”.则上表中 a 的值是 5.0 

②“线段 CF 的长度无需测量即可得到”.请简要说明理由.

(2)将线段 BD 的长度作为自变量 x CD FD 的长度都是 x 的函数,分别记为 y CD y FD ,并在平面直角坐标系 xOy 中画出了函数 y FD 的图象,如图所示.请在同一坐标系中画出函数 y CD 的图象;

(3)继续在同一坐标系中画出所需的函数图象,并结合图象直接写出:当 ΔDCF 为等腰三角形时,线段 BD 长度的近似值(结果保留一位小数).

来源:2020年河南省中考数学试卷
  • 题型:未知
  • 难度:未知

我们学习过利用尺规作图平分一个任意角,而“利用尺规作图三等分一个任意角”曾是数学史上一大难题,之后被数学家证明是不可能完成的.人们根据实际需要,发明了一种简易操作工具 - - 三分角器.图1是它的示意图,其中 AB 与半圆 O 的直径 BC 在同一直线上,且 AB 的长度与半圆的半径相等; DB AC 垂直于点 B DB 足够长.

使用方法如图2所示,若要把 MEN 三等分,只需适当放置三分角器,使 DB 经过 MEN 的顶点 E ,点 A 落在边 EM 上,半圆 O 与另一边 EN 恰好相切,切点为 F ,则 EB EO 就把 MEN 三等分了.

为了说明这一方法的正确性,需要对其进行证明.如下给出了不完整的“已知”和“求证”,请补充完整,并写出“证明”过程.

已知:如图2,点 A B O C 在同一直线上, EB AC ,垂足为点 B   

求证:  

来源:2020年河南省中考数学试卷
  • 题型:未知
  • 难度:未知

初中数学全等三角形的判定与性质解答题