优题课 - 聚名师,上好课(www.youtike.com)
  首页 / 试题库 / 初中数学试题 / 全等三角形的判定与性质 / 解答题
初中数学

如图1,矩形 DEFG 中, DG = 2 DE = 3 Rt Δ ABC 中, ACB = 90 ° CA = CB = 2 FG BC 的延长线相交于点 O ,且 FG BC OG = 2 OC = 4 .将 ΔABC 绕点 O 逆时针旋转 α ( 0 ° α < 180 ° ) 得到△ A ' B ' C '

(1)当 α = 30 ° 时,求点 C ' 到直线 OF 的距离.

(2)在图1中,取 A ' B ' 的中点 P ,连结 C ' P ,如图2.

①当 C ' P 与矩形 DEFG 的一条边平行时,求点 C ' 到直线 DE 的距离.

②当线段 A ' P 与矩形 DEFG 的边有且只有一个交点时,求该交点到直线 DG 的距离的取值范围.

来源:2020年浙江省绍兴市中考数学试卷
  • 题型:未知
  • 难度:未知

在平面直角坐标系 xOy 中,对于 A A ' 两点,若在 y 轴上存在点 T ,使得 ATA ' = 90 ° ,且 TA = TA ' ,则称 A A ' 两点互相关联,把其中一个点叫做另一个点的关联点.已知点 M ( - 2 , 0 ) N ( - 1 , 0 ) ,点 Q ( m , n ) 在一次函数 y = - 2 x + 1 的图象上.

(1)①如图,在点 B ( 2 , 0 ) C ( 0 , - 1 ) D ( - 2 , - 2 ) 中,点 M 的关联点是   B  (填" B "、" C "或" D " )

②若在线段 MN 上存在点 P ( 1 , 1 ) 的关联点 P ' ,则点 P ' 的坐标是   

(2)若在线段 MN 上存在点 Q 的关联点 Q ' ,求实数 m 的取值范围;

(3)分别以点 E ( 4 , 2 ) Q 为圆心,1为半径作 E Q .若对 E 上的任意一点 G ,在 Q 上总存在点 G ' ,使得 G G ' 两点互相关联,请写出点 Q 的坐标.

来源:2021年江苏省常州市中考数学试卷
  • 题型:未知
  • 难度:未知

定义:三角形一个内角的平分线和与另一个内角相邻的外角平分线相交所成的锐角称为该三角形第三个内角的遥望角.

(1)如图1, E ΔABC A 的遥望角,若 A = α ,请用含 α 的代数式表示 E

(2)如图2,四边形 ABCD 内接于 O AD ̂ = BD ̂ ,四边形 ABCD 的外角平分线 DF O 于点 F ,连结 BF 并延长交 CD 的延长线于点 E .求证: BEC ΔABC BAC 的遥望角.

(3)如图3,在(2)的条件下,连结 AE AF ,若 AC O 的直径.

①求 AED 的度数;

②若 AB = 8 CD = 5 ,求 ΔDEF 的面积.

来源:2020年浙江省宁波市中考数学试卷
  • 题型:未知
  • 难度:未知

已知在 ΔACD 中, P CD 的中点, B AD 延长线上的一点,连结 BC AP

(1)如图1,若 ACB = 90 ° CAD = 60 ° BD = AC AP = 3 ,求 BC 的长.

(2)过点 D DE / / AC ,交 AP 延长线于点 E ,如图2所示,若 CAD = 60 ° BD = AC ,求证: BC = 2 AP

(3)如图3,若 CAD = 45 ° ,是否存在实数 m ,当 BD = mAC 时, BC = 2 AP ?若存在,请写出 m 的值;若不存在,请说明理由.

来源:2021年浙江省湖州市中考数学试卷
  • 题型:未知
  • 难度:未知

如图,在 Rt Δ ABC 中, BAC = 90 ° AB = AC ,点 D BC 边上一动点,连接 AD ,把 AD 绕点 A 逆时针旋转 90 ° ,得到 AE ,连接 CE DE .点 F DE 的中点,连接 CF

(1)求证: CF = 2 2 AD

(2)如图2所示,在点 D 运动的过程中,当 BD = 2 CD 时,分别延长 CF BA ,相交于点 G ,猜想 AG BC 存在的数量关系,并证明你猜想的结论;

(3)在点 D 运动的过程中,在线段 AD 上存在一点 P ,使 PA + PB + PC 的值最小.当 PA + PB + PC 的值取得最小值时, AP 的长为 m ,请直接用含 m 的式子表示 CE 的长.

来源:2020年重庆市中考数学试卷(a卷)
  • 题型:未知
  • 难度:未知

如图①, E F 是等腰 Rt Δ ABC 的斜边 BC 上的两动点, EAF = 45 ° CD BC CD = BE

(1)求证: ΔABE ΔACD

(2)求证: E F 2 = B E 2 + C F 2

(3)如图②,作 AH BC ,垂足为 H ,设 EAH = α FAH = β ,不妨设 AB = 2 ,请利用(2)的结论证明:当 α + β = 45 ° 时, tan ( α + β ) = tan α + tan β 1 - tan α tan β 成立.

来源:2021年湖南省娄底市中考数学试卷
  • 题型:未知
  • 难度:未知

如图,在边长为1的正方形 ABCD 中,动点 E F 分别在边 AB CD 上,将正方形 ABCD 沿直线 EF 折叠,使点 B 的对应点 M 始终落在边 AD 上(点 M 不与点 A D 重合),点 C 落在点 N 处, MN CD 交于点 P ,设 BE = x

(1)当 AM = 1 3 时,求 x 的值;

(2)随着点 M 在边 AD 上位置的变化, ΔPDM 的周长是否发生变化?如变化,请说明理由;如不变,请求出该定值;

(3)设四边形 BEFC 的面积为 S ,求 S x 之间的函数表达式,并求出 S 的最小值.

来源:2018年江苏省宿迁市中考数学试卷
  • 题型:未知
  • 难度:未知

有公共顶点 A 的正方形 ABCD 与正方形 AEGF 按如图1所示放置,点 E F 分别在边 AB AD 上,连接 BF DE M BF 的中点,连接 AM DE 于点 N

【观察猜想】

(1)线段 DE AM 之间的数量关系是   ,位置关系是   

【探究证明】

(2)将图1中的正方形 AEGF 绕点 A 顺时针旋转 45 ° ,点 G 恰好落在边 AB 上,如图2,其他条件不变,线段 DE AM 之间的关系是否仍然成立?并说明理由.

来源:2021年山东省烟台市中考数学试卷
  • 题型:未知
  • 难度:未知

已知, ΔABC 中, B = C P BC 边上一点,作 CPE = BPF ,分别交边 AC AB 于点 E F

(1)若 CPE = C (如图 1 ) ,求证: PE + PF = AB

(2)若 CPE C ,过点 B CBD = CPE ,交 CA (或 CA 的延长线)于点 D .试猜想:线段 PE PF BD 之间的数量关系,并就 CPE > C 情形(如图 2 ) 说明理由.

(3)若点 F A 重合(如图 3 ) C = 27 ° ,且 PA = AE

①求 CPE 的度数;

②设 PB = a PA = b AB = c ,试证明: b = a 2 c 2 c

来源:2018年浙江省嘉兴市(舟山市)中考数学试卷
  • 题型:未知
  • 难度:未知

ΔABC 中, ACB = 90 ° AC BC = m D 是边 BC 上一点,将 ΔABD 沿 AD 折叠得到 ΔAED ,连接 BE

(1)特例发现

如图1,当 m = 1 AE 落在直线 AC 上时.

①求证: DAC = EBC

②填空: CD CE 的值为   

(2)类比探究

如图2,当 m 1 AE 与边 BC 相交时,在 AD 上取一点 G ,使 ACG = BCE CG AE 于点 H .探究 CG CE 的值(用含 m 的式子表示),并写出探究过程;

(3)拓展运用

在(2)的条件下,当 m = 2 2 D BC 的中点时,若 EB EH = 6 ,求 CG 的长.

来源:2021年湖北省襄阳市中考数学试卷
  • 题型:未知
  • 难度:未知

ΔABC 中, AB = AC D 是边 BC 上一动点,连接 AD ,将 AD 绕点 A 逆时针旋转至 AE 的位置,使得 DAE + BAC = 180 °

(1)如图1,当 BAC = 90 ° 时,连接 BE ,交 AC 于点 F .若 BE 平分 ABC BD = 2 ,求 AF 的长;

(2)如图2,连接 BE ,取 BE 的中点 G ,连接 AG .猜想 AG CD 存在的数量关系,并证明你的猜想;

(3)如图3,在(2)的条件下,连接 DG CE .若 BAC = 120 ° ,当 BD > CD AEC = 150 ° 时,请直接写出 BD - DG CE 的值.

来源:2021年重庆市中考数学试卷(A卷)
  • 题型:未知
  • 难度:未知

在扇形 AOB 中,半径 OA = 6 ,点 P OA 上,连结 PB ,将 ΔOBP 沿 PB 折叠得到△ O ' BP

(1)如图1,若 O = 75 ° ,且 BO ' AB ^ 所在的圆相切于点 B

①求 APO ' 的度数.

②求 AP 的长.

(2)如图2, BO ' AB ^ 相交于点 D ,若点 D AB ^ 的中点,且 PD / / OB ,求 AB ^ 的长.

来源:2021年浙江省金华市中考数学试卷
  • 题型:未知
  • 难度:未知

如图,在 O 中, AB 是直径, CD 是弦, AB CD ,垂足为 P ,过点 D O 的切线与 AB 延长线交于点 E ,连接 CE

(1)求证: CE O 的切线;

(2)若 O 半径为3, CE = 4 ,求 sin DEC

来源:2021年四川省雅安市中考数学试卷
  • 题型:未知
  • 难度:未知

如图, ΔABC ΔDEF 都是等腰直角三角形, AB = AC BAC = 90 ° DE = DF EDF = 90 ° D BC 边中点,连接 AF ,且 A F E 三点恰好在一条直线上, EF BC 于点 H ,连接 BF CE

(1)求证: AF = CE

(2)猜想 CE BF BC 之间的数量关系,并证明;

(3)若 CH = 2 AH = 4 ,请写出线段 AC AE 的长.

来源:2021年辽宁省营口市中考数学试卷
  • 题型:未知
  • 难度:未知

如图,在 ΔABC 中, AB = AC BAC = α M BC 的中点,点 D MC 上,以点 A 为中心,将线段 AD 顺时针旋转 α 得到线段 AE ,连接 BE DE

(1)比较 BAE CAD 的大小;用等式表示线段 BE BM MD 之间的数量关系,并证明;

(2)过点 M AB 的垂线,交 DE 于点 N ,用等式表示线段 NE ND 的数量关系,并证明.

来源:2021年北京市中考数学试卷
  • 题型:未知
  • 难度:未知

初中数学全等三角形的判定与性质解答题