优题课 - 聚名师,上好课(www.youtike.com)
  首页 / 试题库 / 初中数学试题 / 全等三角形的判定与性质 / 解答题
初中数学

实践与探究

操作一:如图①,已知正方形纸片 ABCD ,将正方形纸片沿过点 A 的直线折叠,使点 B 落在正方形 ABCD 的内部,点 B 的对应点为点 M ,折痕为 AE ,再将纸片沿过点 A 的直线折叠,使 AD AM 重合,折痕为 AF ,则 EAF =   度.

操作二:如图②,将正方形纸片沿 EF 继续折叠,点 C 的对应点为点 N .我们发现,当点 E 的位置不同时,点 N 的位置也不同.当点 E BC 边的某一位置时,点 N 恰好落在折痕 AE 上,则 AEF =   度.

在图②中,运用以上操作所得结论,解答下列问题:

(1)设 AM NF 的交点为点 P .求证: ΔANP ΔFNE

(2)若 AB = 3 ,则线段 AP 的长为   

来源:2021年吉林省长春市中考数学试卷
  • 题型:未知
  • 难度:未知

如图,在 O 中, AB 是直径, CD 是弦, AB CD ,垂足为 P ,过点 D O 的切线与 AB 延长线交于点 E ,连接 CE

(1)求证: CE O 的切线;

(2)若 O 半径为3, CE = 4 ,求 sin DEC

来源:2021年四川省雅安市中考数学试卷
  • 题型:未知
  • 难度:未知

问题解决:如图1,在矩形 ABCD 中,点 E F 分别在 AB BC 边上, DE = AF DE AF 于点 G

(1)求证:四边形 ABCD 是正方形;

(2)延长 CB 到点 H ,使得 BH = AE ,判断 ΔAHF 的形状,并说明理由.

类比迁移:如图2,在菱形 ABCD 中,点 E F 分别在 AB BC 边上, DE AF 相交于点 G DE = AF AED = 60 ° AE = 6 BF = 2 ,求 DE 的长.

来源:2021年甘肃省武威市中考数学试卷
  • 题型:未知
  • 难度:未知

如图①, E F 是等腰 Rt Δ ABC 的斜边 BC 上的两动点, EAF = 45 ° CD BC CD = BE

(1)求证: ΔABE ΔACD

(2)求证: E F 2 = B E 2 + C F 2

(3)如图②,作 AH BC ,垂足为 H ,设 EAH = α FAH = β ,不妨设 AB = 2 ,请利用(2)的结论证明:当 α + β = 45 ° 时, tan ( α + β ) = tan α + tan β 1 - tan α tan β 成立.

来源:2021年湖南省娄底市中考数学试卷
  • 题型:未知
  • 难度:未知

已知在 ΔACD 中, P CD 的中点, B AD 延长线上的一点,连结 BC AP

(1)如图1,若 ACB = 90 ° CAD = 60 ° BD = AC AP = 3 ,求 BC 的长.

(2)过点 D DE / / AC ,交 AP 延长线于点 E ,如图2所示,若 CAD = 60 ° BD = AC ,求证: BC = 2 AP

(3)如图3,若 CAD = 45 ° ,是否存在实数 m ,当 BD = mAC 时, BC = 2 AP ?若存在,请写出 m 的值;若不存在,请说明理由.

来源:2021年浙江省湖州市中考数学试卷
  • 题型:未知
  • 难度:未知

已知等边三角形 ABC ,过 A 点作 AC 的垂线 l ,点 P l 上一动点(不与点 A 重合),连接 CP ,把线段 CP 绕点 C 逆时针方向旋转 60 ° 得到 CQ ,连 QB

(1)如图1,直接写出线段 AP BQ 的数量关系;

(2)如图2,当点 P B AC 同侧且 AP = AC 时,求证:直线 PB 垂直平分线段 CQ

(3)如图3,若等边三角形 ABC 的边长为4,点 P B 分别位于直线 AC 异侧,且 ΔAPQ 的面积等于 3 4 ,求线段 AP 的长度.

来源:2021年湖北省十堰市中考数学试卷
  • 题型:未知
  • 难度:未知

在平面直角坐标系 xOy 中,对于 A A ' 两点,若在 y 轴上存在点 T ,使得 ATA ' = 90 ° ,且 TA = TA ' ,则称 A A ' 两点互相关联,把其中一个点叫做另一个点的关联点.已知点 M ( - 2 , 0 ) N ( - 1 , 0 ) ,点 Q ( m , n ) 在一次函数 y = - 2 x + 1 的图象上.

(1)①如图,在点 B ( 2 , 0 ) C ( 0 , - 1 ) D ( - 2 , - 2 ) 中,点 M 的关联点是   B  (填" B "、" C "或" D " )

②若在线段 MN 上存在点 P ( 1 , 1 ) 的关联点 P ' ,则点 P ' 的坐标是   

(2)若在线段 MN 上存在点 Q 的关联点 Q ' ,求实数 m 的取值范围;

(3)分别以点 E ( 4 , 2 ) Q 为圆心,1为半径作 E Q .若对 E 上的任意一点 G ,在 Q 上总存在点 G ' ,使得 G G ' 两点互相关联,请写出点 Q 的坐标.

来源:2021年江苏省常州市中考数学试卷
  • 题型:未知
  • 难度:未知

如图, AB O 的直径, C O 上一点,连接 AC BC D AB 延长线上一点,连接 CD ,且 BCD = A

(1)求证: CD O 的切线;

(2)若 O 的半径为 5 ΔABC 的面积为 2 5 ,求 CD 的长;

(3)在(2)的条件下, E O 上一点,连接 CE 交线段 OA 于点 F ,若 EF CF = 1 2 ,求 BF 的长.

来源:2021年四川省成都市中考数学试卷
  • 题型:未知
  • 难度:未知

如图, ΔABC ΔDEF 都是等腰直角三角形, AB = AC BAC = 90 ° DE = DF EDF = 90 ° D BC 边中点,连接 AF ,且 A F E 三点恰好在一条直线上, EF BC 于点 H ,连接 BF CE

(1)求证: AF = CE

(2)猜想 CE BF BC 之间的数量关系,并证明;

(3)若 CH = 2 AH = 4 ,请写出线段 AC AE 的长.

来源:2021年辽宁省营口市中考数学试卷
  • 题型:未知
  • 难度:未知

在等腰 ΔADE 中, AE = DE ΔABC 是直角三角形, CAB = 90 ° ABC = 1 2 AED ,连接 CD BD ,点 F BD 的中点,连接 EF

(1)当 EAD = 45 ° ,点 B 在边 AE 上时,如图①所示,求证: EF = 1 2 CD

(2)当 EAD = 45 ° ,把 ΔABC 绕点 A 逆时针旋转,顶点 B 落在边 AD 上时,如图②所示,当 EAD = 60 ° ,点 B 在边 AE 上时,如图③所示,猜想图②、图③中线段 EF CD 又有怎样的数量关系?请直接写出你的猜想,不需证明.

来源:2021年黑龙江省龙东地区中考数学试卷
  • 题型:未知
  • 难度:未知

ABC为等边三角形, AB 8 AD BC 于点DE为线段 AD 上一点, AE 2 3 .以AE为边在直线 AD 右侧构造等边三角形 AEF ,连接 CE N CE 的中点.

(1)如图1, EF AC 交于点G,连接 NG ,求线段 NG 的长;

(2)如图2,将 AEF 绕点A逆时针旋转,旋转角为α,M为线段EF的中点,连接 DN MN .当 30 ° α 120 ° 时,猜想∠DNM的大小是否为定值,并证明你的结论;

(3)连接BN,在 AEF 绕点A逆时针旋转过程中,当线段BN最大时,请直接写出 ADN 的面积.

来源:2020年重庆市中考数学试卷(b卷)
  • 题型:未知
  • 难度:未知

如图,在 ΔABC 中, AB = AC BAC = α M BC 的中点,点 D MC 上,以点 A 为中心,将线段 AD 顺时针旋转 α 得到线段 AE ,连接 BE DE

(1)比较 BAE CAD 的大小;用等式表示线段 BE BM MD 之间的数量关系,并证明;

(2)过点 M AB 的垂线,交 DE 于点 N ,用等式表示线段 NE ND 的数量关系,并证明.

来源:2021年北京市中考数学试卷
  • 题型:未知
  • 难度:未知

如图,在矩形 ABCD 中, E 是边 AB 上一点, BE = BC EF CD ,垂足为 F .将四边形 CBEF 绕点 C 顺时针旋转 α ( 0 ° < α < 90 ° ) ,得到四边形 C B ' E ' F ' B ' E ' 所在的直线分别交直线 BC 于点 G ,交直线 AD 于点 P ,交 CD 于点 K E ' F ' 所在的直线分别交直线 BC 于点 H ,交直线 AD 于点 Q ,连接 B ' F ' CD 于点 O

(1)如图1,求证:四边形 BEFC 是正方形;

(2)如图2,当点 Q 和点 D 重合时.

①求证: GC = DC

②若 OK = 1 CO = 2 ,求线段 GP 的长;

(3)如图3,若 BM / / F ' B ' GP 于点 M tan G = 1 2 ,求 S ΔGMB S CF ' H 的值.

来源:2021年湖北省宜昌市中考数学试卷
  • 题型:未知
  • 难度:未知

已知正方形 ABCD 与正方形 AEFG ,正方形 AEFG 绕点 A 旋转一周.

(1)如图①,连接 BG CF ,求 CF BG 的值;

(2)当正方形 AEFG 旋转至图②位置时,连接 CF BE ,分别取 CF BE 的中点 M N ,连接 MN 、试探究: MN BE 的关系,并说明理由;

(3)连接 BE BF ,分别取 BE BF 的中点 N Q ,连接 QN AE = 6 ,请直接写出线段 QN 扫过的面积.

来源:2021年江苏省宿迁市中考数学试卷
  • 题型:未知
  • 难度:未知

有公共顶点 A 的正方形 ABCD 与正方形 AEGF 按如图1所示放置,点 E F 分别在边 AB AD 上,连接 BF DE M BF 的中点,连接 AM DE 于点 N

【观察猜想】

(1)线段 DE AM 之间的数量关系是   ,位置关系是   

【探究证明】

(2)将图1中的正方形 AEGF 绕点 A 顺时针旋转 45 ° ,点 G 恰好落在边 AB 上,如图2,其他条件不变,线段 DE AM 之间的关系是否仍然成立?并说明理由.

来源:2021年山东省烟台市中考数学试卷
  • 题型:未知
  • 难度:未知

初中数学全等三角形的判定与性质解答题