优题课 - 聚名师,上好课(www.youtike.com)
  首页 / 试题库 / 初中数学试题 / 等腰三角形的性质 / 解答题
初中数学

如图,在 ΔABC 中, AB = AC AO BC 于点 O OE AB 于点 E ,以点 O 为圆心, OE 为半径作半圆,交 AO 于点 F

(1)求证: AC O 的切线;

(2)若点 F OA 的中点, OE = 3 ,求图中阴影部分的面积;

(3)在(2)的条件下,点 P BC 边上的动点,当 PE + PF 取最小值时,直接写出 BP 的长.

来源:2018年江苏省扬州市中考数学试卷
  • 题型:未知
  • 难度:未知

如图,在 ΔABC 中, AB = AC = 5 BC = 6 ,以 AB 为直径作 O 分别交于 AC BC 于点 D E ,过点 E O 的切线 EF AC 于点 F ,连接 BD

(1)求证: EF ΔCDB 的中位线;

(2)求 EF 的长.

来源:2019年广西玉林市中考数学试卷
  • 题型:未知
  • 难度:未知

如图, Rt Δ ABC 中, ACB = 90 ° ,将 ΔABC 绕点 C 顺时针旋转得到 ΔDEC ,点 D 落在线段 AB 上,连接 BE

(1)求证: DC 平分 ADE

(2)试判断 BE AB 的位置关系,并说明理由;

(3)若 BE = BD ,求 tan ABC 的值.

来源:2020年四川省甘孜州中考数学试卷
  • 题型:未知
  • 难度:未知

已知:如图,在 ΔABC 中, AB = BC = 10 ,以 AB 为直径作 O 分别交 AC BC 于点 D E ,连接 DE DB ,过点 E EF AB ,垂足为 F ,交 BD 于点 P

(1)求证: AD = DE

(2)若 CE = 2 ,求线段 CD 的长;

(3)在(2)的条件下,求 ΔDPE 的面积.

来源:2017年广西桂林市中考数学试卷
  • 题型:未知
  • 难度:未知

如图, ΔABC 的外角 BAM 的平分线与它的外接圆相交于点 E ,连接 BE CE ,过点 E EF / / BC ,交 CM 于点 D

求证:(1) BE = CE

(2) EF O 的切线.

来源:2020年山东省威海市中考数学试卷
  • 题型:未知
  • 难度:未知

如图,在 ΔABC 中, AB = AC BAC = 120 ° ,点 D BC 边上, D 经过点 A 和点 B 且与 BC 边相交于点 E

(1)求证: AC D 的切线;

(2)若 CE = 2 3 ,求 D 的半径.

来源:2019年甘肃省临夏州中考数学试卷
  • 题型:未知
  • 难度:未知

如图,四边形 ABCD 为矩形, G 是对角线 BD 的中点.连接 GC 并延长至 F ,使 CF = GC ,以 DC CF 为邻边作菱形 DCFE ,连接 CE

(1)判断四边形 CEDG 的形状,并证明你的结论.

(2)连接 DF ,若 BC = 3 ,求 DF 的长.

来源:2020年四川省德阳市中考数学试卷
  • 题型:未知
  • 难度:未知

如图,在 ΔABC 中, AB = AC ,以 AC 边为直径作 O BC 边于点 D ,过点 D DE AB 于点 E ED AC 的延长线交于点 F

(1)求证: EF O 的切线;

(2)若 EB = 3 2 ,且 sin CFD = 3 5 ,求 O 的半径与线段 AE 的长.

来源:2016年四川省乐山市中考数学试卷
  • 题型:未知
  • 难度:未知

如图,把 ΔABC 沿 BC 翻折得 ΔDBC

(1)连接 AD ,则 BC AD 的位置关系是  

(2)不在原图中添加字母和线段,只加一个条件使四边形 ABDC 是平行四边形,写出添加的条件,并说明理由.

来源:2018年江苏省常州市中考数学试卷
  • 题型:未知
  • 难度:未知

如图,四边形 ABCD 为平行四边形,连接 AC ,且 AC = 2 AB .请用尺规完成基本作图:作出 BAC 的角平分线与 BC 交于点 E .连接 BD AE 于点 F ,交 AC 于点 O ,猜想线段 BF 和线段 DF 的数量关系,并证明你的猜想.(尺规作图保留作图痕迹,不写作法)

来源:2021年重庆市中考数学试卷(B卷)
  • 题型:未知
  • 难度:未知

如图,在 ΔABC 中, A = 40 ° ,点 D E 分别在边 AB AC 上, BD = BC = CE ,连结 CD BE

(1)若 ABC = 80 ° ,求 BDC ABE 的度数;

(2)写出 BEC BDC 之间的关系,并说明理由.

来源:2021年浙江省绍兴市中考数学试卷
  • 题型:未知
  • 难度:未知

如图,在 ABC 中, AB AC ,点DE分别是ACAB的中点.求证: BD CE

来源:2020年甘肃省兰州市中考数学试卷
  • 题型:未知
  • 难度:未知

如图, Rt Δ ABC 中, ACB = 90 ° ,顶点 A B 都在反比例函数 y = k x ( x > 0 ) 的图象上,直线 AC x 轴,垂足为 D ,连结 OA OC ,并延长 OC AB 于点 E ,当 AB = 2 OA 时,点 E 恰为 AB 的中点,若 AOD = 45 ° OA = 2 2

(1)求反比例函数的解析式;

(2)求 EOD 的度数.

来源:2020年江西省中考数学试卷
  • 题型:未知
  • 难度:未知

如图,在 ΔABC 中, AB = AC ,点 D E 分别是线段 BC AD 的中点,过点 A BC 的平行线交 BE 的延长线于点 F ,连接 CF

(1)求证: ΔBDE ΔFAE

(2)求证:四边形 ADCF 为矩形.

来源:2020年四川省遂宁市中考数学试卷
  • 题型:未知
  • 难度:未知

如图, ΔABC 中, BAC = 120 ° AB = AC = 6 P 是底边 BC 上的一个动点 ( P B C 不重合),以 P 为圆心, PB 为半径的 P 与射线 BA 交于点 D ,射线 PD 交射线 CA 于点 E

(1)若点 E 在线段 CA 的延长线上,设 BP = x AE = y ,求 y 关于 x 的函数关系式,并写出 x 的取值范围.

(2)当 BP = 2 3 时,试说明射线 CA P 是否相切.

(3)连接 PA ,若 S ΔAPE = 1 8 S ΔABC ,求 BP 的长.

来源:2016年贵州省遵义市中考数学试卷
  • 题型:未知
  • 难度:未知

初中数学等腰三角形的性质解答题