如图,在中,,的平分线交于点,点在上,以为直径的经过点.
(1)求证:①是的切线;
②;
(2)若点是劣弧的中点,且,试求阴影部分的面积.
如图1,菱形的顶点,在直线上,,以点为旋转中心将菱形顺时针旋转,得到菱形,交对角线于点,交直线于点,连接.
(1)当时,求的大小.
(2)如图2,对角线交于点,交直线与点,延长交于点,连接.当的周长为2时,求菱形的周长.
如图,、是的两条直径,过点的的切线交的延长线于点,连接、.
(1)求证;;
(2)若是的中点,,求的半径.
如图,已知等边,于,,为线段上一点,且,连接,,于,连接.
(1)求证:;
(2)试说明与的位置关系和数量关系.
如图,,点、分别在射线、上,,.
(1)用尺规在图中作一段劣弧,使得它在、两点分别与射线和相切.要求:写出作法,并保留作图痕迹;
(2)根据(1)的作法,结合已有条件,请写出已知和求证,并证明;
(3)求所得的劣弧与线段、围成的封闭图形的面积.
如图,为半圆的直径,点为半圆上任一点.
(1)若,过点作半圆的切线交直线于点.求证:;
(2)若,过点作的平行线交半圆于点.当以点,,,为顶点的四边形为菱形时,求的长.
如图,在 中, ,点 是 的中点,以 为直径作 分别交 , 于点 , .
(1)求证: ;
(2)填空:
①若 ,当 时, ;
②连接 , ,当 的度数为 时,四边形 是菱形.
如图, 内接于圆 ,且 ,延长 到点 ,使 ,连接 交圆 于点 .
(1)求证: ;
(2)填空:
①当 的度数为 时,四边形 是菱形.
②若 , ,则 的长为 .
在等边 中,
(1)如图1, , 是 边上的两点, , ,求 的度数;
(2)点 , 是 边上的两个动点(不与点 , 重合),点 在点 的左侧,且 ,点 关于直线 的对称点为 ,连接 , .
①依题意将图2补全;
②小茹通过观察、实验提出猜想:在点 , 运动的过程中,始终有 ,小茹把这个猜想与同学们进行交流,通过讨论,形成了证明该猜想的几种想法:
想法1:要证明 ,只需证 是等边三角形;
想法2:在 上取一点 ,使得 ,要证明 ,只需证 ;
想法3:将线段 绕点 顺时针旋转 ,得到线段 ,要证 ,只需证 ,
请你参考上面的想法,帮助小茹证明 (一种方法即可).
如图,A、B、C三点在同一直线上,分别以AB、BC为边,在直线AC的同侧作等边△ABD和等边△BCE,连接AE交BD于点M,连接CD交BE于点N,连接MN得△BMN.
试判断△BMN的形状,并说明理由.
(年贵州省铜仁市)已知,如图,点D在等边三角形ABC的边AB上,点F在边AC上,连接DF并延长交BC的延长线于点E,EF=FD.
求证:AD=CE.
试题篮
()