优题课 - 聚名师,上好课(www.youtike.com)
  首页 / 试题库 / 初中数学试题 / 勾股定理 / 解答题
初中数学

问题呈现

如图1,在边长为1的正方形网格中,连接格点 D N E C DN EC 相交于点 P ,求 tan CPN 的值.

方法归纳

求一个锐角的三角函数值,我们往往需要找出(或构造出)一个直角三角形.观察发现问题中 CPN 不在直角三角形中,我们常常利用网格画平行线等方法解决此类问题,比如连接格点 M N ,可得 MN / / EC ,则 DNM = CPN ,连接 DM ,那么 CPN 就变换到 Rt Δ DMN 中.

问题解决

(1)直接写出图1中 tan CPN 的值为 2 

(2)如图2,在边长为1的正方形网格中, AN CM 相交于点 P ,求 cos CPN 的值;

思维拓展

(3)如图3, AB BC AB = 4 BC ,点 M AB 上,且 AM = BC ,延长 CB N ,使 BN = 2 BC ,连接 AN CM 的延长线于点 P ,用上述方法构造网格求 CPN 的度数.

来源:2018年江苏省扬州市中考数学试卷
  • 题型:未知
  • 难度:未知

如图,在以线段 AB 为直径的 O 上取一点 C ,连接 AC BC .将 ΔABC 沿 AB 翻折后得到 ΔABD

(1)试说明点 D O 上;

(2)在线段 AD 的延长线上取一点 E ,使 A B 2 = AC · AE .求证: BE O 的切线;

(3)在(2)的条件下,分别延长线段 AE CB 相交于点 F ,若 BC = 2 AC = 4 ,求线段 EF 的长.

来源:2018年江苏省盐城市中考数学试卷
  • 题型:未知
  • 难度:未知

如图,在 ΔABC 中, ACB = 90 ° AC = m BC = n m > n ,点 P 是边 AB 上一点,连接 CP ,将 ΔACP 沿 CP 翻折得到 ΔQCP

(1)若 m = 4 n = 3 ,且 PQ AB ,求 BP 的长;

(2)连接 BQ ,若四边形 BCPQ 是平行四边形,求 m n 之间的关系式.

来源:2018年江苏省无锡市中考数学试卷(副卷)
  • 题型:未知
  • 难度:未知

在菱形 ABCD 中, ABC = 60 ° ,点 P 是射线 BD 上一动点,以 AP 为边向右侧作等边 ΔAPE ,点 E 的位置随着点 P 的位置变化而变化.

(1)如图1,当点 E 在菱形 ABCD 内部或边上时,连接 CE BP CE 的数量关系是   CE AD 的位置关系是  

(2)当点 E 在菱形 ABCD 外部时,(1)中的结论是否还成立?若成立,请予以证明;若不成立,请说明理由(选择图2,图3中的一种情况予以证明或说理);

(3)如图4,当点 P 在线段 BD 的延长线上时,连接 BE ,若 AB = 2 3 BE = 2 19 ,求四边形 ADPE 的面积.

来源:2018年江西省中考数学试卷
  • 题型:未知
  • 难度:未知

如图,在 ΔABC 中, ACB = 90 ° ,以点 B 为圆心, BC 长为半径画弧,交线段 AB 于点 D ;以点 A 为圆心, AD 长为半径画弧,交线段 AC 于点 E ,连接 CD

(1)若 A = 28 ° ,求 ACD 的度数.

(2)设 BC = a AC = b

①线段 AD 的长是方程 x 2 + 2 ax b 2 = 0 的一个根吗?说明理由.

②若 AD = EC ,求 a b 的值.

来源:2018年浙江省杭州市中考数学试卷
  • 题型:未知
  • 难度:未知

问题背景

如图1,在正方形 ABCD 的内部,作 DAE = ABF = BCG = CDH ,根据三角形全等的条件,易得 ΔDAE ΔABF ΔBCG ΔCDH ,从而得到四边形 EFGH 是正方形.

类比探究

如图2,在正 ΔABC 的内部,作 BAD = CBE = ACF AD BE CF 两两相交于 D E F 三点 ( D E F 三点不重合)

(1) ΔABD ΔBCE ΔCAF 是否全等?如果是,请选择其中一对进行证明.

(2) ΔDEF 是否为正三角形?请说明理由.

(3)进一步探究发现, ΔABD 的三边存在一定的等量关系,设 BD = a AD = b AB = c ,请探索 a b c 满足的等量关系.

来源:2017年浙江省衢州市中考数学试卷
  • 题型:未知
  • 难度:未知

在一次课题学习中,老师让同学们合作编题,某学习小组受赵爽弦图的启发,编写了下面这道题,请你来解一解:

如图,将矩形 ABCD 的四边 BA CB DC AD 分别延长至 E F G H ,使得 AE = CG BF = DH ,连接 EF FG GH HE

(1)求证:四边形 EFGH 为平行四边形;

(2)若矩形 ABCD 是边长为1的正方形,且 FEB = 45 ° tan AEH = 2 ,求 AE 的长.

来源:2017年浙江省宁波市中考数学试卷
  • 题型:未知
  • 难度:未知

如图1,我们把对角线互相垂直的四边形叫做垂美四边形.

(1)概念理解:如图2,在四边形 ABCD 中, AB = AD CB = CD ,问四边形 ABCD 是垂美四边形吗?请说明理由.

(2)性质探究:试探索垂美四边形 ABCD 两组对边 AB CD BC AD 之间的数量关系.

猜想结论:(要求用文字语言叙述)  

写出证明过程(先画出图形,写出已知、求证).

(3)问题解决:如图3,分别以 Rt Δ ACB 的直角边 AC 和斜边 AB 为边向外作正方形 ACFG 和正方形 ABDE ,连接 CE BG GE ,已知 AC = 4 AB = 5 ,求 GE 长.

来源:2016年浙江省衢州市中考数学试卷
  • 题型:未知
  • 难度:未知

如图, AB O 的直径,弦 CD AB ,垂足为点 P ,直线 BF AD 的延长线交于点 F ,且 AFB = ABC

(1)求证:直线 BF O 的切线.

(2)若 CD = 2 3 OP = 1 ,求线段 BF 的长.

来源:2016年浙江省衢州市中考数学试卷
  • 题型:未知
  • 难度:未知

如图,已知四边形 ABCD 和四边形 DEFG 为正方形,点 E 在线段 DC 上,点 A D G 在同一直线上,且 AD = 3 DE = 1 ,连接 AC CG AE ,并延长 AE CG 于点 H

(1)求 sin EAC 的值.

(2)求线段 AH 的长.

来源:2016年浙江省杭州市中考数学试卷
  • 题型:未知
  • 难度:未知

如图,在 ΔABC 中, AB = 7 . 5 AC = 9 S ΔABC = 81 4 .动点 P A 点出发,沿 AB 方向以每秒5个单位长度的速度向 B 点匀速运动,动点 Q C 点同时出发,以相同的速度沿 CA 方向向 A 点匀速运动,当点 P 运动到 B 点时, P Q 两点同时停止运动,以 PQ 为边作正 ΔPQM ( P Q M 按逆时针排序),以 QC 为边在 AC 上方作正 ΔQCN ,设点 P 运动时间为 t 秒.

(1)求 cos A 的值;

(2)当 ΔPQM ΔQCN 的面积满足 S ΔPQM = 9 5 S ΔQCN 时,求 t 的值;

(3)当 t 为何值时, ΔPQM 的某个顶点 ( Q 点除外)落在 ΔQCN 的边上.

来源:2018年四川省攀枝花市中考数学试卷
  • 题型:未知
  • 难度:未知

如图, ΔABC 中, AB = AC BAC = 90 ° ,点 D E 分别在 AB BC 上, EAD = EDA ,点 F DE 的延长线与 AC 的延长线的交点.

(1)求证: DE = EF

(2)判断 BD CF 的数量关系,并说明理由;

(3)若 AB = 3 AE = 5 ,求 BD 的长.

来源:2018年四川省甘孜州中考数学试卷
  • 题型:未知
  • 难度:未知

如图,点 E F 分别是矩形 ABCD 的边 AD AB 上一点,若 AE = DC = 2 ED ,且 EF EC

(1)求证:点 F AB 的中点;

(2)延长 EF CB 的延长线相交于点 H ,连接 AH ,已知 ED = 2 ,求 AH 的值.

来源:2018年四川省德阳市中考数学试卷
  • 题型:未知
  • 难度:未知

如图, 在 Rt Δ ACB 中, ACB = 90 ° ,以 AC 为直径作 O AB 于点 D E BC 的中点, 连接 DE 并延长交 AC 的延长线于点 F

(1) 求证: DE O 的切线;

(2) 若 CF = 2 DF = 4 ,求 O 直径的长 .

来源:2017年四川省南充市中考数学试卷
  • 题型:未知
  • 难度:未知

如图, BD ΔABC 外接圆 O 的直径,且 BAE = C

(1)求证: AE O 相切于点 A

(2)若 AE / / BC BC = 2 7 AC = 2 2 ,求 AD 的长.

来源:2018年山东省潍坊市中考数学试卷
  • 题型:未知
  • 难度:未知

初中数学勾股定理解答题