性质探究
如图(1),在等腰三角形中,,则底边与腰的长度之比为 .
理解运用
(1)若顶角为的等腰三角形的周长为,则它的面积为 ;
(2)如图(2),在四边形中,,在边,上分别取中点,,连接.若,,求线段的长.
类比拓展
顶角为的等腰三角形的底边与一腰的长度之比为 .(用含的式子表示)
如图,在中,是边上一点,且.
(1)尺规作图(保留作图痕迹,不写作法)
①作的角平分线交于点;
②作线段的垂直平分线交于点.
(2)连接,直接写出线段和的数量关系及位置关系.
如图, 是 的直径, 是弦,四边形 是平行四边形, 与 相交于点 ,下列结论错误的是
A. |
|
B. |
|
C. |
|
D. |
平分 |
在中,,,,,分别是,,的中点,连接,.
(1)求证:四边形是矩形;
(2)请用无刻度的直尺在图中作出的平分线(保留作图痕迹,不写作法).
如图,要测量池塘两岸相对的,两点间的距离,可以在池塘外选一点,连接,,分别取,的中点,,测得,则的长是 .
如图,在中,对角线与相交于点,点,分别为,的中点,延长至,使,连接.
(1)求证:;
(2)当与满足什么数量关系时,四边形是矩形?请说明理由.
如图,已知等边,于,,为线段上一点,且,连接,,于,连接.
(1)求证:;
(2)试说明与的位置关系和数量关系.
试题篮
()