优题课 - 聚名师,上好课(www.youtike.com)
  首页 / 试题库 / 初中数学试题 / 菱形的判定
初中数学

如图,在四边形中,,点的中点,点的中点,,连接

(1)判断四边形的形状,并说明理由;

(2)如果,点上的动点,求的周长的最小值.

来源:2019年四川省德阳市中考数学试卷
  • 题型:未知
  • 难度:未知

如图1,在矩形纸片 ABCD 中, AB = 3 cm AD = 5 cm ,折叠纸片使 B 点落在边 AD 上的 E 处,折痕为 PQ ,过点 E EF / / AB PQ F ,连接 BF

(1)求证:四边形 BFEP 为菱形;

(2)当点 E AD 边上移动时,折痕的端点 P Q 也随之移动;

①当点 Q 与点 C 重合时(如图 2 ) ,求菱形 BFEP 的边长;

②若限定 P Q 分别在边 BA BC 上移动,求出点 E 在边 AD 上移动的最大距离.

来源:2017年山东省德州市中考数学试卷
  • 题型:未知
  • 难度:未知

如图, ΔABC ΔABD ,点 E 在边 AB 上, CE / / BD ,连接 DE .求证:

(1) CEB = CBE

(2)四边形 BCED 是菱形.

来源:2016年辽宁省沈阳市中考数学试卷
  • 题型:未知
  • 难度:未知

如图,过 ABCD 对角线 AC BD 的交点 E 作两条互相垂直的直线,分别交边 AB BC CD DA 于点 P M Q N

(1)求证: ΔPBE ΔQDE

(2)顺次连接点 P M Q N ,求证:四边形 PMQN 是菱形.

来源:2020年山东省滨州市中考数学试卷
  • 题型:未知
  • 难度:未知

综合与实践

动手操作:

第一步:如图1,正方形纸片沿对角线所在的直线折叠,展开铺平.在沿过点的直线折叠,使点,点都落在对角线上.此时,点与点重合,记为点,且点,点,点三点在同一条直线上,折痕分别为.如图2.

第二步:再沿所在的直线折叠,重合,得到图3.

第三步:在图3的基础上继续折叠,使点与点重合,如图4,展开铺平,连接.如图5,图中的虚线为折痕.

问题解决:

(1)在图5中,的度数是  的值是  

(2)在图5中,请判断四边形的形状,并说明理由;

(3)在不增加字母的条件下,请你以图中5中的字母表示的点为顶点,动手画出一个菱形(正方形除外),并写出这个菱形:  

来源:2019年山西省中考数学试卷
  • 题型:未知
  • 难度:未知

如图, AE / / BF AC 平分 BAE ,且交 BF 于点 C BD 平分 ABF ,且交 AE 于点 D AC BD 相交于点 O ,连接 CD

(1)求 AOD 的度数;

(2)求证:四边形 ABCD 是菱形.

来源:2016年辽宁省抚顺市中考数学试卷
  • 题型:未知
  • 难度:未知

如图,由10根完全相同的小棒拼接而成,请你再添2根与前面完全相同的小棒,拼接后的图形恰好有3个菱形的方法共有 (    )

A.

3种

B.

4种

C.

5种

D.

6种

来源:2019年江西省中考数学试卷
  • 题型:未知
  • 难度:未知

如图, D E F 分别是 ΔABC 各边的中点,连接 DE EF AE

(1)求证:四边形 ADEF 为平行四边形;

(2)加上条件   后,能使得四边形 ADEF 为菱形,请从① BAC = 90 ° ;② AE 平分 BAC ;③ AB = AC 这三个条件中选择1个条件填空(写序号),并加以证明.

来源:2021年江苏省盐城市中考数学试卷
  • 题型:未知
  • 难度:未知

如图①,在中,,过上一点于点,以为顶点,为一边,作,另一边于点

(1)求证:四边形为平行四边形;

(2)当点中点时,的形状为  

(3)延长图①中的到点,使,连接,得到图②,若,判断四边形的形状,并说明理由.

来源:2018年吉林省中考数学试卷
  • 题型:未知
  • 难度:未知

如图, ΔABC 内接于圆 O ,且 AB = AC ,延长 BC 到点 D ,使 CD = CA ,连接 AD 交圆 O 于点 E

(1)求证: ΔABE ΔCDE

(2)填空:

①当 ABC 的度数为   时,四边形 AOCE 是菱形.

②若 AE = 3 AB = 2 2 ,则 DE 的长为   

来源:2016年河南省中考数学试卷(备用卷)
  • 题型:未知
  • 难度:未知

如图,在四边形 ABCD 中, AC 平分 BCD AC AB E BC 的中点, AD AE

(1)求证: A C 2 = CD · BC

(2)过 E EG AB ,并延长 EG 至点 K ,使 EK = EB

①若点 H 是点 D 关于 AC 的对称点,点 F AC 的中点,求证: FH GH

②若 B = 30 ° ,求证:四边形 AKEC 是菱形.

来源:2016年山东省泰安市中考数学试卷
  • 题型:未知
  • 难度:未知

如图,在 ABCD 中,对角线 AC BD 相交于点 O ,过点 O 的直线 EF BA DC 的延长线分别交于点 E F

(1)求证: AE = CF

(2)请再添加一个条件,使四边形 BFDE 是菱形,并说明理由.

来源:2021年四川省遂宁市中考数学试卷
  • 题型:未知
  • 难度:未知

如图,点 O 为矩形 ABCD 的对称中心,点 E 从点 A 出发沿 AB 向点 B 运动,移动到点 B 停止,延长 EO CD 于点 F ,则四边形 AECF 形状的变化依次为 (    )

A.平行四边形 正方形 平行四边形 矩形

B.平行四边形 菱形 平行四边形 矩形

C.平行四边形 正方形 菱形 矩形

D.平行四边形 菱形 正方形 矩形

来源:2020年浙江省绍兴市中考数学试卷
  • 题型:未知
  • 难度:未知

如图,在 ABCD 中, E F 分别是 AD BC 上的点,且 DE = BF AC EF .求证:四边形 AECF 是菱形.

来源:2018年四川省遂宁市中考数学试卷
  • 题型:未知
  • 难度:未知

如图,四边形 ABCD 的两条对角线相交于点 O ,且互相平分.添加下列条件,仍不能判定四边形 ABCD 为菱形的是 (    )

A.

AC BD

B.

AB = AD

C.

AC = BD

D.

ABD = CBD

来源:2019年宁夏中考数学试卷
  • 题型:未知
  • 难度:未知

初中数学菱形的判定试题