【再现】如图①,在中,点,分别是,的中点,可以得到:,且.(不需要证明)
【探究】如图②,在四边形中,点,,,分别是,,,的中点,判断四边形的形状,并加以证明.
【应用】在(1)【探究】的条件下,四边形中,满足什么条件时,四边形是菱形?你添加的条件是: .(只添加一个条件)
(2)如图③,在四边形中,点,,,分别是,,,的中点,对角线,相交于点.若,四边形面积为5,则阴影部分图形的面积和为 .
如图,△BAD是由△BEC在平面内绕点B旋转60°而得,且AB⊥BC,BE=CE,连接DE.
(1)求证:△BDE≌△BCE;
(2)试判断四边形ABED的形状,并说明理由.
如图,已知四边形 是平行四边形,点 , 分别是 , 上的点, ,并且 .
求证:(1) ;
(2)四边形 是菱形.
如图,在 中,对角线 与 相交于点 ,过点 的直线 与 、 的延长线分别交于点 、 .
(1)求证: ;
(2)请再添加一个条件,使四边形 是菱形,并说明理由.
如图,点 为矩形 的对称中心,点 从点 出发沿 向点 运动,移动到点 停止,延长 交 于点 ,则四边形 形状的变化依次为
A.平行四边形 正方形 平行四边形 矩形
B.平行四边形 菱形 平行四边形 矩形
C.平行四边形 正方形 菱形 矩形
D.平行四边形 菱形 正方形 矩形
如图,四边形 的两条对角线相交于点 ,且互相平分.添加下列条件,仍不能判定四边形 为菱形的是
A. |
|
B. |
|
C. |
|
D. |
|
如图,在边长为1个单位长度的小正方形组成的的网格中,给出了以格点(网格线的交点)为端点的线段.
(1)将线段向右平移5个单位,再向上平移3个单位得到线段,请画出线段.
(2)以线段为一边,作一个菱形,且点,也为格点.(作出一个菱形即可)
如图①,在 中, , , 是斜边 上的中线,点 为射线 上一点,将 沿 折叠,点 的对应点为点 .
(1)若 .直接写出 的长(用含 的代数式表示);
(2)若 ,垂足为 ,点 与点 在直线 的异侧,连接 ,如②,判断四边形 的形状,并说明理由;
(3)若 ,直接写出 的度数.
如图,在矩形 中, , 相交于点 ,过点 作 于点 ,交 于点 ,过点 作 交 于点 .交 于点 ,连接 , .有下列结论:①四边形 为平行四边形;② ;③ 为等边三角形;④当 时,四边形 是菱形.其中,正确结论的序号 .
如图, 是边长为1的等边三角形, 、 为线段 上两动点,且 ,过点 、 分别作 、 的平行线相交于点 ,分别交 、 于点 、 .现有以下结论: ;②当点 与点 重合时, ;③ ;④当 时,四边形 为菱形,其中正确结论为
A. |
①②③ |
B. |
①②④ |
C. |
①②③④ |
D. |
②③④ |
如图, 的直角边 在 轴上,顶点 的坐标为 ,直线 交 于点 ,交 轴于点 .
(1)求直线 的函数表达式;
(2)动点 在 轴上从点 出发,以每秒1个单位的速度向 轴正方向运动,过点 作直线 垂直于 轴,设运动时间为 .
①点 在运动过程中,是否存在某个位置,使得 ,若存在,请求出点 的坐标;若不存在,请说明理由;
②请探索当 为何值时,在直线 上存在点 ,在直线 上存在点 ,使得以 为一边, , , , 为顶点的四边形为菱形,并求出此时 的值.
试题篮
()