正方形A1B1C1O,A2B2C2C1,A3B3C3C2,…按如图的方式放置.点A1,A2,A3,…和点C1,C2,C3,…分别在直线y=x+1和x轴上,则点B6的坐标是 .
如图是一个小正方形的展开图,把展开图折叠成小正方形后,相对两个面上的数字之和的最大值是()
A.11 | B.9 | C.7 | D.5 |
【试题背景】已知:l ∥∥∥k,平行线l与、与、与k之间的距离分别为1、2、3,且1 =3 = 1,2 =" 2" .我们把四个顶点分别在l、、、k这四条平行线上的四边形称为“格线四边形”.
【探究1】(1)如图1,正方形为“格线四边形”,于点,的反向延长线交直线k于点. 求正方形的边长.
【探究2】(2)矩形为“格线四边形”,其长 :宽 =" 2" :1 ,则矩形的宽为 .(直接写出结果即可)
【探究3】(3)如图2,菱形为“格线四边形”且∠=60°,△是等边三角形,于点, ∠=90°,直线分别交直线l、k于点、. 求证:.
【拓 展】(4)如图3,l ∥k,等边三角形的顶点、分别落在直线l、k上,于点,且="4" ,∠=90°,直线分别交直线l、k于点、,点、分别是线段、上的动点,且始终保持=,于点.
猜想:在什么范围内,∥?直接写出结论。
如图,在菱形ABCD中,∠ABC=60°,BC=1cm,以DC为边在菱形的外部作正三角形CDE,连接AE,则AE= cm.
如图,线段AC是矩形ABCD的对角线,
(1)请你作出线段AC的垂直平分线,交AC于点O,交AB于点E,交DC于点F(保留作图痕迹,不写作法)
(2)求证:AE=AF.
已知:如图,在四边形ABCD中,AB∥CD,E,F为对角线AC上两点,且AE=CF,DF∥BE.
求证:四边形ABCD为平行四边形.
如图,在正方形ABCD中,点F为CD上一点,BF与AC交于点E.若∠CBF=20°,则∠AED等于 度.
如图,菱形ABCD的对角线的长分别为2和5,P是对角线AC上任一点(点P不与点A、C重合)且PE∥BC交AB于E,PF∥CD交AD于F,则阴影部分的面积是( )
A.2 B. C.3 D.
如图1,点E为正方形ABCD的边AB上一点,EF⊥EC,且EF=EC,连接AF.
(1)求∠FAD的度数;
(2)如图2,连接FC交BD于M,求证:AD=AF+2DM;
(3)如图2,连接FC交BD于M,交AD于N.若AF=,AN=10,则BM的长为 .
把矩形ABCD沿着CE折叠,使得点F落在AD上,若AB=8,BC=10,则折痕线CE=_________.
如图所示,矩形ABCD中,AB=4,BC=,点E是折线ADC上的一个动点(点E与点A不重合),点P是点A关于BE的对称点.在点E运动的过程中,使△PCB为等腰三角形的点E的位置共有( ).
A.2个 | B.3个 | C.4个 | D.5个 |
试题篮
()