如图,矩形ABCD中,AB=3,BC=5,点P是BC边上的一个动点(点P不与点B,C重合),现将△PCD沿直线PD折叠,使点C落下点C′处;作∠BPC′的平分线交AB于点E.设BP=x,BE=y,那么y关于x的函数图象大致应为( )
A.![]() |
B.![]() |
C.![]() |
D.![]() |
如图,点A、B、C、D、E、F、G、H、K都是7×8方格纸中的格点,为使△DEM ∽△ABC,则点M所在位置应是F、G、H、K四点中的( )
A.K B.H C.G D.F
如图(1),E为矩形ABCD边AD上一点,点P从点B沿折线BE-ED-DC运动到点C时停止,点Q从点B沿BC运动到点C时停止,它们运动的速度都是1cm/s.如果点P、Q同时开始运动,设运动时间为t(s),△BPQ的面积为,已知y与t的函数关系的图象如图(2)所示,那么下列结论正确的是( )
A.AE=8 |
B.当0≤t≤10时,![]() |
C.![]() |
D.当![]() |
如图,是
的直径,
是
的切线,点
在
上,
,
则
的长为( )
A.![]() |
B.![]() |
C.![]() |
D.![]() |
如图1,菱形ABCD的对角线交于点O,AC=2BD,点P是AO上一个动点,过点P作AC的垂线交菱形的边于M,N两点.设AP=x,△OMN的面积为y, 表示y与x的函数关系的图象大致如图2所示,则菱形的周长为( )
A.2 | B.![]() |
C.4 | D.![]() |
如图,在矩形中,点A的坐标是(-2,1),点C的纵坐标是4,则B、C两点的坐标为( )
A.(,
)、(
,
) B.(
,
)、(
,
)
C.(,
)、(
,
) D.(
,
) 、(
,
)
如图,O是△ABC的外接圆的圆心,∠ABC=60°,BF,CE分别是AC,AB边上的高且交于点H,CE交⊙O于M,D,G分别在边BC,AB上,且BD=BH,BG=BO,下列结论:①∠ABO=∠HBC;②AB•BC=2BF•BH;③BM=BD;④△GBD为等边三角形,其中正确结论的序号是( )
A.①② | B.①③④ | C.①②④ | D.①②③④ |
如图,O为矩形ABCD的中心,将直角三角板的直角顶点与O点重合,转动三角板使两直角边始终与BC,AB相交,交点分别为M,N.如果AB=4,AD=6,OM=x,ON=y.则y与x的关系是( )
A.![]() |
B.![]() |
C.y=x | D.![]() |
如图,□ABCD的面积为20,点E,F,G为对角线AC的四等分点,连接BE并延长交AD于H,连接HF并延长交BC于点M,则△BHM的面积为( )
A.10 | B.![]() |
C.4 | D.5 |
如图,Rt△ABC中,∠ACB=Rt∠,AC=2BC=2,作内接正方形A1B1D1C;在Rt△AA1B1中,作内接正方形A2B2D2A1;在Rt△AA2B2中,作内接正方形A3B3D3A2;……;依次作下去,则第n个正方形AnBnDnAn-1的边长是( )
A.![]() |
B.![]() |
C.![]() |
D.![]() |
如图,已知在Rt△ABC中,AB=AC=2,在△ABC内作第一个内接正方形DEFG;然后取GF的中点P,连接PD、PE,在△PDE内作第二个内接正方形HIKJ;再取线段KJ的中点Q,在△QHI内作第三个内接正方形…依次进行下去,则第n个内接正方形的边长为( )
A、 B、
C、
D、
如图,在Rt△ABC内有边长分别为a,b,c的三个正方形,则a,b,c满足的关系式为
A.b=a+c | B.b=ac | C.b2=a2+c2 | D.b=2a=2c |
如图,△ABC≌△ADE且∠ABC=∠ADE,∠ACB=∠AED,BC.DE交于点O.则下列四个结论中,①∠1=∠2;②BC=DE;③△ABD∽△ACE;④A.O、C.E四点在同一个圆上,一定成立的有( )
A. 1个 B. 2个 C. 3个 D. 4个
如图,已知边长为4的正方形ABCD,E是BC边上一动点(与B、C不重合),连结AE,作EF⊥AE交∠BCD的外角平分线于F,设BE=x,△ECF的面积为y,下列图象中,能表示y与x的函数关系的图象大致是( )
A. B.
C. D.
在平面坐标系中,正方形ABCD的位置如图所示,点A的坐标为(1,0),点D的坐标为(0,2),延长CB交x轴于点A1,作正方形A1B1C1C,延长C1B1交x轴于点A2,作正方形A2B2C2C1,……… 按这样的规律进行下去,第2012个正方形的面积为( )
A.![]() |
B.![]() |
C.![]() |
D.![]() |
试题篮
()