优题课 - 聚名师,上好课(www.youtike.com)
  首页 / 试题库 / 初中数学试题 / 相似多边形的性质 / 解答题
初中数学

如图,已知AB是⊙O的直径,AB=8, 点C在半径OA上(点C与点O、A不重合),过点C作AB的垂线交⊙O于点D,连结OD,过点B作OD的平行线交⊙O于点E、交射线CD于点F.

(1)若,求∠F的度数;
(2)设写出之间的函数解析式,并写出自变量取值范围;
(3)设点C关于直线OD的对称点为P,若△PBE为等腰三角形,求OC的长.

  • 题型:未知
  • 难度:未知

已知:如图,在等腰直角△ABC中,AC=BC,斜边AB的长为4,过点C作射线CP//AB,D为射线CP上一点,E在边BC上(不与B、C重合),且∠DAE=45°,AC与DE交于点O.

(1)求证:△ADE∽△ACB;
(2)设CD=x,BAE = y,求y关于x的函数解析式,并写出它的定义域;
(3)如果△COD与△BEA相似,求CD的值.

  • 题型:未知
  • 难度:未知

(本小题满分10分)如图1,△ABC是等腰直角三角形,四边形ADEF是正方形,D、F分别在AB、AC边上,此时BD=CF,BD⊥CF成立.

(1)当正方形ADEF绕点A逆时针旋转θ(0°<θ<90°)时,如图2,BD=CF成立吗?若成立,请证明;若不成立,请说明理由.
(2)当正方形ADEF绕点A逆时针旋转45°时,如图3,延长BD交CF于点G.求证:BD⊥CF;
(3)在(2)小题的条件下, AC与BG的交点为M, 当AB=4,AD= 时,求线段CM的长.

  • 题型:未知
  • 难度:未知

如图,已知抛物线与x轴交于A(-1,0)、E(3,0)两点,与y轴交于点B(0,3)。

(1)求抛物线的解析式;
(2)设抛物线顶点为D,求四边形AEDB的面积;
(3)△AOB与△DBE是否相似?如果相似,请给以证明;如果不相似,请说明理由。

  • 题型:未知
  • 难度:未知

如图,已知抛物线与x轴交于A、B两点,点C是抛物线在第一象限内部分的一个动点,点D是OC的中点,连接BD并延长,交AC于点E.

(1)说明:
(2)当点C、点A到y轴距离相等时,求点E坐标.
(3)当的面积为时,求的值.

  • 题型:未知
  • 难度:未知

如图1,将三角板放在正方形ABCD上,使三角板的直角顶点E与正方形ABCD的顶点A重合.三角板的一边交CD于点F,另一边交CB的延长线于点G.

(1)求证:EF=EG;
(2)如图2,移动三角板,使顶点E始终在正方形ABCD的对角线AC上,其他条件不变,(1)中的结论是否仍然成立?若成立,请给予证明;若不成立,请说明理由;
(3)如图3,将(2)中的“正方形ABCD”改为“矩形ABCD”,且使三角板的一边经过点B,其他条件不变,若AB=a,BC=b,请直接写出的值.

  • 题型:未知
  • 难度:未知

如图,在矩形ABCD中,AB=4,AD=5,P是射线BC上的一个动点,过点P作PE⊥AP,交射线DC于点E,射线AE交射线BC于点F,设BP=a.

(1)当点P在线段BC上时(点P与点B,C都不重合),试用含a的代数式表示CE;
(2)当a=3时,连结DF,试判断四边形APFD的形状,并说明理由;
(3)当tan∠PAE=时,求a的值.

  • 题型:未知
  • 难度:未知

(本小题满分14分)如图,在平面直角坐标系中,抛物线过点(0,4)和(8,0),P(t,0)是轴正半轴上的一个动点,M是线段AP的中点,将线段MP绕点P顺时针旋转90°得线段PB.过点B作轴的垂线、过点A作轴的垂线,两直线相交于点D.

(1)求此抛物线的对称轴;
(2)当为何值时,点D落在抛物线上?
(3)是否存在,使得以A、B、D为顶点的三角形与△PEB相似?若存在,求此时的值;若不存在,请说明理由.

  • 题型:未知
  • 难度:未知

已知,如图,以点P(﹣1,0)为圆心的圆,交x轴于A、C两点(A在C的左侧),交y轴于B、D两点(B在D的上方),且∠BAC=30°,

(1)如图①求⊙P的半径及点B的坐标;
(2)点Q是⊙P上任意一点,求△ABQ面积S的取值范围;
(3)如图②,已知点M(-5,0),过M作直线y=kx+b交y轴于点N,
①若MN//AB,试判断MN与⊙P的位置关系,并说明理由;
②在该直线上存在一点G,使以G、A、C为顶点的三角形是直角三角形,且满足条件的点G有且只有三个不同位置,求直线MN的函数关系式.

  • 题型:未知
  • 难度:未知

如图,在△ABC中,∠B=90°,∠ACB=60°,AB=,AD⊥AC,连接CD.点E在AC上,,过点E作MN⊥AC,分别交AB、CD于点M、N.

(1)求ME的长;
(2)当AD=3时,求四边形ADNE的周长.

  • 题型:未知
  • 难度:未知

如图,Rt△ABC中,∠ACB=90°,AC=4,BC=3,P是斜边AB上的一个动点(点P与点A、B不重合),以点P为圆心,PA为半径的⊙P与射线AC的另一个交点为D,射线PD交射线BC于点E.
(1)如图1,若点E在线段BC的延长线上,设AP=x,CE=y,

①求y关于x的函数关系式,并写出x的取值范围;
②当以BE为直径的圆和⊙P外切时,求AP的长;
(2)设线段BE的中点为Q,射线PQ与⊙P相交于点I,若CI=AP,求AP的长.

  • 题型:未知
  • 难度:未知

如图,在□ABCD中,E是AB的中点,ED和AC相交于点F,过点F作FG∥AB,交AD于点G.

(1)求证:AB=3FG;
(2)若AB:AC=:,求证:

  • 题型:未知
  • 难度:未知

在△ABC中,∠A=90°,AB=8,AC=6,M是AB上的动点(不与A,B重合),过M点作MN∥BC交AC于点N.以MN为直径作⊙O,并在⊙O内作内接矩形AMPN.设AM=

(1)用含的代数式表示△MNP的面积S;
(2)在动点M的运动过程中,记△MNP与梯形BCNM重合部分的面积为,试求关于的函数表达式,并求为何值时,的值最大,最大值是多少?

  • 题型:未知
  • 难度:未知

如图,已知抛物线轴相交于A、B两点,与轴相交于点C,若已知B点的坐标为B(8,0).

(1)求抛物线的解析式及其对称轴方程;
(2)连接AC、BC,试判断△AOC与△COB是否相似?并说明理由;
(3)M为抛物线上BC之间的一点,N为线段BC上的一点,若MN∥轴,求MN的最大值;
(4)在抛物线的对称轴上是否存在点Q,使△ACQ为等腰三角形?若存在,求出符合条件的Q点坐标;若不存在,请说明理由.

  • 题型:未知
  • 难度:未知

如图,点是菱形的对角线上一点,连接并延长,交,交的延长线于点

(1)图中△与哪个三角形全等?并说明理由.
(2)求证:△∽△.
(3)猜想:线段之间存在什么关系?并说明理由.

  • 题型:未知
  • 难度:未知

初中数学相似多边形的性质解答题