如图,斜坡AC的坡度(坡比)为1:,AC=10米.坡顶有
一旗杆BC,旗杆顶端B点与A点有一条彩带AB相连,AB=14米.试求旗杆BC的高度.
如图,边长为4的正方形OABC的顶点O为坐标原点,点A
在x轴的正半轴上,点C在y轴的正半轴上.动点D在线段BC上移动(不与B,C重合),
连接OD,过点D作DE⊥OD,交边AB于点E,连接OE。
(1)当CD=1时,求点E的坐标;
(2)如果设CD=t,梯形COEB的面积为S,那么是否存在S的最大值?若存在,请求出这
个最大值及此时t的值;若不存在,请说明理由。
如图(1),(2)所示,矩形ABCD的边长AB=6,BC=4,点F在DC上,DF=2。
动点M、N分别从点D、B同时出发,沿射线DA、线段BA向点A的方向运动(点M可
运动到DA的延长线上),当动点N运动到点A时,M、N两点同时停止运动。连接FM、
FN,当F、N、M不在同一直线时,可得△FMN,过△FMN三边的中点作△PQW。设动点
M、N的速度都是1个单位/秒,M、N运动的时间为x秒。试解答下列问题:
(1)说明△FMN∽△QWP;
(2)设0≤x≤4(即M从D到A运动的时间段)。试问x为何值时,△PQW为直角三角形?
当x在何范围时,△PQW不为直角三角形?
(3)问当x为何值时,线段MN最短?求此时MN的值。
(本题满分10分)如图,在平面直角坐标系中,把抛物线向左平移1个单位,再向下平移4个单位,得到抛物线.所得抛物线与轴交于两点(点在点的左边),与轴交于点,顶点为.
(1)写出的值;
(2)判断的形状,并说明理由;
(3)在线段上是否存在点,使∽?若存在,求出点的坐标;若不存在,说明理由.
(本小题满分12分)
如图,一块直角三角板的直角顶点P放在正方形ABCD的BC边上,并且使一条直角边经过点D,另一条直角边与AB交于点Q.
⑴ 请你写出一对相似三角形,并加以证明;
⑵ 当点P满足什么条件时, ,请证明你的结论;
(8分) 甲、乙、丙三个学习小组于同一时刻在阳光下对校园中一些物体进行了测量.下面是他们通过测量得到的一些信息:
甲组:如图(1),测得一根直立于平地,长为80cm的竹竿的影长为60cm.
乙组:如图(2),测得学校旗杆的影长为900cm.
丙组:如图(3),测得校园景灯(灯罩视为圆柱体,灯杆粗细忽略不计)的灯罩部分影长HQ
为90cm,灯杆被阳光照射到的部分PG长40cm,未被照射到的部分KP长24cm。
(1)请根据甲、乙两组得到的信息计算出学校旗杆的高度;
(2)请根据甲、丙两组得到的信息,求:
①灯罩底面半径MK的长;
②灯罩的主视图面积。
如图1,在四边形ABCD的AB边上任取一点E(点E不与点A、点B
重合),分别连接ED、EC,可以把四边形ABCD分成3个三角形.如果其中有2个三角形
相似,我们就把点E叫做四边形ABCD的AB边上的相似点;如果这3个三角形都相似,
我们就把点E叫做四边形ABCD的AB边上的强相似点.
(1)若图1中,∠A=∠B=∠DEC=50°,说明点E是四边形ABCD的AB边上的相似点;
(2)①如图2,画出矩形ABCD的AB边上的一个强相似点.(要求:画图工具不限,不写画法,保留画图痕迹或有必要的说明.)
②对于任意的一个矩形,是否一定存在强相似点?如果一定存在,请说明理由;如果不一定存在,请举出反例.
(3)在梯形ABCD中,AD∥BC,AD<BC,∠B=90°,点E是梯形ABCD的AB边上的一个强相似点,判断AE与BE的数量关系并说明理由.
如图,在Rt△ABC中,∠C=90°,AC=BC=4cm,点D为AC边上一
点,且AD=3cm,动点E从点A出发,以1cm/s的速度沿线段AB向终点B运动,运动
时间为x s.作∠DEF=45°,与边BC相交于点F.设BF长为ycm.
(1)当x= ▲ s时,DE⊥AB;
(2)求在点E运动过程中,y与x之间的函数关系式及点F运动路线的长;
(3)当△BEF为等腰三角形时,求x的值.
在边长为1的正方形网格中,正方形与正方形的位置如图所示.
(1)请你按下列要求画图:
① 联结交于点;
② 在上取一点,联结,,使△与△相似;
(2)若是线段上一点,连结并延长交四边形的一边于点,且满足,则的值为_____________.
如图,在中,,是角平分线,平分交于
点,经过两点的交于点,交于点,恰为的直径.
(1)求证:与相切;
(2)当时,求的半径.
如图,设抛物线C1:, C2:,C1与C2的交点为A,
B,点A的坐标是,点B的横坐标是-2.
(1)求的值及点B的坐标;
(2)点D在线段AB上,过D作x轴的垂线,垂足为点H,在DH的右侧作正三角形DHG. 过C2顶点M的直线记为,且与x轴交于点N.
①若过△DHG的顶点G,点D的坐标为(1, 2),求点N的横坐标;
②若与△DHG的边DG相交,求点N的横坐标的取值范围.
等腰△ABC,AB=AC=8,∠BAC=120°,P为BC的中点,小亮拿着300角的透明三角板,使300角的顶点落在点P,三角板绕P点旋转.
(1)如图a,当三角板的两边分别交AB、AC于点E、F时.求证:△BPE∽△CFP;
(2)操作:将三角板绕点P旋转到图b情形时,三角板的两边分别交BA的延长线、边AC于点E、F.
①探究1:△BPE与△CFP还相似吗?
②探究2:连结EF,△BPE与△PFE是否相似?请说明理由;
③设EF=m,△EPF的面积为S,试用m的代数式表示S.
梯形ABCD中,AD∥BC,BC=20cm,AD=10cm,现有两个动点P、Q分别从B、D两点同时出发,点P以每秒2cm的速度沿BC向终点C移动,点Q以每秒1cm的速度沿DA向终点A移动,线段PQ与BD相交于点E,过E作EF∥BC交CD于点F,射线QF交BC的延长线于点H,设动点P、Q移动的时间为t(单位:秒,0<t<10).
(1)当t为何值时,四边形PCDQ为平行四边形?
(2)在P、Q移动的过程中,线段PH的长是否发生改变?如果不变,求出线段PH的长;如果改变,请说明理由.
如图,已知AB=AC,∠A=36°,AB的中垂线MD交AC于点D、交AB于点M.下列结论:
①BD是∠ABC的平分线;
②△BCD是等腰三角形;
③△ABC∽△BCD;
④△AMD≌△BCD.
正确的有( )个.
A、4 B、3 C、2 D、1
(本题满分12分,第(1)、(2)题各6分)
如图,已知抛物线y=ax2+bx+c与x轴交于A、B两点,与y轴交于点C, D为OC的中点,直线AD交抛物线于点E(2,6),且△ABE与△ABC的面积之比为3∶2.
(1)求直线AD和抛物线的解析式;
(2)抛物线的对称轴与轴相交于点F,点Q为直线AD上一点,且△ABQ与△ADF相似,直接写出点Q点的坐标.
试题篮
()