优题课 - 聚名师,上好课(www.youtike.com)
  首页 / 试题库 / 初中数学试题 / 相似多边形的性质
初中数学

已知Rt△ABC中,AC=3,BC= 4,过直角顶点CCA1AB,垂足为A1,再过A1A1C1BC, 垂足为C1,过C1C1A2AB,垂足为A2,再过A2A2C2BC,垂足为C2,…,这样一直做下去,得到了一组线段CA1A1C1C1A2,…,则CA1=             .

  • 题型:未知
  • 难度:未知

如图,在△ABC中,DEBCDFAC,则下列比例式一定成立的是(   )

A. B. C. D.
  • 题型:未知
  • 难度:未知

如图,平行四边形ABCD,DE交BC于F,交AB的延长线于E,且∠EDB=∠C.

(1)求证:△ADE∽△DBE;
(2)若DE=9cm,AE=12cm,求DC的长。

  • 题型:未知
  • 难度:未知

如图,△ABC中,AB=8厘米,AC=16厘米,点P从A出发,以每秒2厘米的速度向B运动,点Q从C同时出发,以每秒3厘米的速度向A运动,其中一个动点到端点时,另一个动点也相应停止运动,那么,当以A、P、Q为顶点的三角形与△ABC相似时,运动时间为_________________

 

  • 题型:未知
  • 难度:未知

如图,O是△ABC的重心,AN,CM相交于点O,那么△MON与△AOC的面积的比是_______________

  • 题型:未知
  • 难度:未知

在比例尺1:50000的地图上,量得A、B两地的距离为4cm,则A、B两地的实际距离是___________千米

  • 题型:未知
  • 难度:未知

(本题满分10分)如图,已知一矩形ABCD,若把△ABE沿折痕BE向上翻折,A点恰好落在DC上,设此点为F,且这时AE:ED=5:3,BE=5,这个矩形的长宽各是多少?

  • 题型:未知
  • 难度:未知

如图,在梯形ABCD中,ADBC,∠B=90°,∠C=45°,AD=1,BC=4,EAB中点,EFDCBC于点F,求EF的长.

  • 题型:未知
  • 难度:未知

如图,已知EF//BC,且AE∶BE=1∶2,若△AEF的面积为4,
则△ABC的面积为________________.

  • 题型:未知
  • 难度:未知

(满分l4分)如图,点P是双曲线y=(k1<0,x<0)上一动点,过点P作x轴,y轴的垂线,分别交x轴,y轴于A,B两点,交双曲线y= (0<k2<︱k1︱)于E,F两点.
(1)图①中,四边形PEOF 的面积S1=__________(用含k1,k2的式子表示);
(2)图②中,设点P坐标为(-4,3).
①判断EF与AB的位置关系,并证明你的结论;
②记S2=S△PEF-S△OEF,S2是否有最小值?若有,求出其最小值;若没有,请说明理由

  • 题型:未知
  • 难度:未知

(满分l4分)已知:抛物线y=x2-(a+2)x+9的顶点在坐标轴上.
(1)求a的值;
(2)若该抛物线的顶点C在x轴的正半轴上,而此抛物线与直线Y=x+9交于A,B两点,且A点在B点左侧,P为线段AB上的点(A,B两端点除外).过点P作x轴的垂线与抛物线交于点Q(可在图中画示意图).问:

①线段AB上是否存在这样的点P,使得PQ的长等于6?若存在,请求出点P的坐标;若不存在,请说明理由.
②线段AB上是否存在这样的点P,使得△ABQ∽△OAC?若存在,请求出此时点Q的坐标;若不存在,请说明理由.

  • 题型:未知
  • 难度:未知

(满分l4分)如图,已知AB为⊙O的直径,弦CD⊥AB,垂足为点H.
(1)求证:AH·AB=AC2
(2)若过点A的直线与弦CD(不含端点)相交于点E,与⊙O相交于点F,求证:AE·AF=AC2
(3)若过点A的直线与直线CD相交于点P,与⊙O相交于点Q,判断AP·AQ=AC2是否成立(不必证明).

  • 题型:未知
  • 难度:未知

在△ABC中,若D,E分别是边AB,AC上的点,且DE∥BC,AD=1,DB=2,则△ADE与△ABC的面积比为__________.

  • 题型:未知
  • 难度:未知

如图,若A,B,C,P,Q,甲,乙,丙,丁都是方格纸中的格点,为使△ABC∽△PQR,则点R应是甲,乙,丙,丁四点中的

A.甲 B.乙 C.丙 D.丁
  • 题型:未知
  • 难度:未知

(满分l4分)如图已知直线l1:y=x+与直线l2:y=2x+16相交于点C,l1,l2分别交x轴于A,B两点.矩形DEFG的顶点D,E分别在直线l1,l2上,顶点F,G都在X轴上,且点G与点B重合.
(1)求△ABC的面积;
(2)求矩形DEFG的边DE与EF的长;
(3)若此时矩形DEFG,沿x轴的反方向以每秒l个单位长度的速度平移,设移动时间为t 5(0≤t≤12),矩形DEFG与△ABC重叠部分的面积为S,求S关于t的函数关系式,并写出相应的t的取值范围.

  • 题型:未知
  • 难度:未知

初中数学相似多边形的性质试题