优题课 - 聚名师,上好课(www.youtike.com)
  首页 / 试题库 / 初中数学试题 / 相似多边形的性质
初中数学

(本小题满分12分)
如图,一块直角三角板的直角顶点P放在正方形ABCD的BC边上,并且使一条直角边经过点D,另一条直角边与AB交于点Q.
⑴ 请你写出一对相似三角形,并加以证明;
⑵ 当点P满足什么条件时, ,请证明你的结论;

  • 题型:未知
  • 难度:未知

如图,由已知条件得x=               

  • 题型:未知
  • 难度:未知

(8分) 甲、乙、丙三个学习小组于同一时刻在阳光下对校园中一些物体进行了测量.下面是他们通过测量得到的一些信息:
甲组:如图(1),测得一根直立于平地,长为80cm的竹竿的影长为60cm.
乙组:如图(2),测得学校旗杆的影长为900cm.
丙组:如图(3),测得校园景灯(灯罩视为圆柱体,灯杆粗细忽略不计)的灯罩部分影长HQ
为90cm,灯杆被阳光照射到的部分PG长40cm,未被照射到的部分KP长24cm。
(1)请根据甲、乙两组得到的信息计算出学校旗杆的高度;
(2)请根据甲、丙两组得到的信息,求:
灯罩底面半径MK的长;
②灯罩的主视图面积。

  • 题型:未知
  • 难度:未知

如图1,在四边形ABCD的AB边上任取一点E(点E不与点A、点B
重合),分别连接ED、EC,可以把四边形ABCD分成3个三角形.如果其中有2个三角形
相似,我们就把点E叫做四边形ABCD的AB边上的相似点;如果这3个三角形都相似,
我们就把点E叫做四边形ABCD的AB边上的强相似点.

(1)若图1中,∠A=∠B=∠DEC=50°,说明点E是四边形ABCD的AB边上的相似点;
(2)①如图2,画出矩形ABCD的AB边上的一个强相似点.(要求:画图工具不限,不写画法,保留画图痕迹或有必要的说明.)
②对于任意的一个矩形,是否一定存在强相似点?如果一定存在,请说明理由;如果不一定存在,请举出反例.
(3)在梯形ABCD中,AD∥BC,AD<BC,∠B=90°,点E是梯形ABCD的AB边上的一个强相似点,判断AE与BE的数量关系并说明理由.

  • 题型:未知
  • 难度:未知

如图,利用标杆BE测量建筑物DC的高度,如果标杆BE长为1.5米,测得
AB=2米, BC=10米,且点A、E、D在一条直线上,则楼高CD是(▲)

A.8米         B.7.5米       C.9米           D.9.5米

  • 题型:未知
  • 难度:未知

如图,在Rt△ABC中,∠C=90°,AC=BC=4cm,点D为AC边上一
点,且AD=3cm,动点E从点A出发,以1cm/s的速度沿线段AB向终点B运动,运动
时间为x s.作∠DEF=45°,与边BC相交于点F.设BF长为ycm.
(1)当x=   ▲ s时,DE⊥AB;
(2)求在点E运动过程中,y与x之间的函数关系式及点F运动路线的长;
(3)当△BEF为等腰三角形时,求x的值.

  • 题型:未知
  • 难度:未知

在边长为1的正方形网格中,正方形与正方形的位置如图所示.
(1)请你按下列要求画图:
① 联于点
② 在上取一点,联结,使△与△相似;
(2)若是线段上一点,连结并延长交四边形的一边于点,且满足,则的值为_____________.

  • 题型:未知
  • 难度:未知

如图,在中,是角平分线,平分
,经过两点的于点,交于点恰为的直径.

(1)求证:相切;
(2)当时,求的半径.

  • 题型:未知
  • 难度:未知

如图,设抛物线C1:, C2:,C1与C2的交点为A,
B,点A的坐标是,点B的横坐标是-2.
(1)求的值及点B的坐标; 
(2)点D在线段AB上,过D作x轴的垂线,垂足为点H,在DH的右侧作正三角形DHG. 过C2顶点M的直线记为,且与x轴交于点N.
①若过△DHG的顶点G,点D的坐标为(1, 2),求点N的横坐标;
②若与△DHG的边DG相交,求点N的横坐标的取值范围.

  • 题型:未知
  • 难度:未知

等腰△ABC,AB=AC=8,∠BAC=120°,P为BC的中点,小亮拿着300角的透明三角板,使300角的顶点落在点P,三角板绕P点旋转.
(1)如图a,当三角板的两边分别交AB、AC于点E、F时.求证:△BPE∽△CFP;
(2)操作:将三角板绕点P旋转到图b情形时,三角板的两边分别交BA的延长线、边AC于点E、F.
①探究1:△BPE与△CFP还相似吗?
②探究2:连结EF,△BPE与△PFE是否相似?请说明理由;
③设EF=m,△EPF的面积为S,试用m的代数式表示S.
   

  • 题型:未知
  • 难度:未知

如图,射线AMBN都垂直于线段AB,点EAM上一点,过点ABE的垂线AC分别交BEBN于点FC,过点CAM的垂线CD,垂足为D.若CDCF,则        . 

  • 题型:未知
  • 难度:未知

若△ABC∽△DEF,它们的面积比为4:1,则△ABC与△DEF的相似比为(  )

A.2:1 B.1:2
C.4:1 D.1:4
  • 题型:未知
  • 难度:未知

若相似△ABC与△DEF的相似比为1:3,则△ABC与△DEF的面积比为(  )

A.1:3 B.1:9
C.3:1 D.1:
  • 题型:未知
  • 难度:未知

梯形ABCD中,AD∥BC,BC=20cm,AD=10cm,现有两个动点P、Q分别从B、D两点同时出发,点P以每秒2cm的速度沿BC向终点C移动,点Q以每秒1cm的速度沿DA向终点A移动,线段PQ与BD相交于点E,过E作EF∥BC交CD于点F,射线QF交BC的延长线于点H,设动点P、Q移动的时间为t(单位:秒,0<t<10).
(1)当t为何值时,四边形PCDQ为平行四边形?
(2)在P、Q移动的过程中,线段PH的长是否发生改变?如果不变,求出线段PH的长;如果改变,请说明理由.

  • 题型:未知
  • 难度:未知

如图,在直角三角形ABC中(∠C=90°),放置边长分别3,4,x的三个正方形,则x的值为(  )

A.5 B.6
C.7 D.12
  • 题型:未知
  • 难度:未知

初中数学相似多边形的性质试题