已知的直径,弦与弦交于点.且,垂足为点.
(1)如图1,如果,求弦的长;
(2)如图2,如果为弦的中点,求的余切值;
(3)联结、、,如果是的内接正边形的一边,是的内接正边形的一边,求的面积.
某镇为创建特色小镇,助力乡村振兴,决定在辖区的一条河上修建一座步行观光桥.如图,该河旁有一座小山,山高 ,坡面 的坡度 (注:坡度 是指坡面的铅直高度与水平宽度的比),点 、 与河岸 、 在同一水平线上,从山顶 处测得河岸 和对岸 的俯角分别为 , .
(1)求山脚 到河岸 的距离;
(2)若在此处建桥,试求河宽 的长度.(结果精确到
(参考数据: , ,
某种落地灯如图1所示, 为立杆,其高为 ; 为支杆,它可绕点 旋转,其中 长为 ; 为悬杆,滑动悬杆可调节 的长度.支杆 与悬杆 之间的夹角 为 .
(1)如图2,当支杆 与地面垂直,且 的长为 时,求灯泡悬挂点 距离地面的高度;
(2)在图2所示的状态下,将支杆 绕点 顺时针旋转 ,同时调节 的长(如图 ,此时测得灯泡悬挂点 到地面的距离为 ,求 的长.(结果精确到 ,参考数据: , , , , ,
如图,在某小区内拐角处的一段道路上,有一儿童在 处玩耍,一辆汽车从被楼房遮挡的拐角另一侧的 处驶来,已知 , , , ,汽车从 处前行多少米才能发现 处的儿童(结果保留整数)?
(参考数据: , , ; , ,
某公园为引导游客观光游览公园的景点,在主要路口设置了导览指示牌,某校"综合与实践"活动小组想要测量此指示牌的高度,他们绘制了该指示牌支架侧面的截面图如图所示,并测得 , , , ,四边形 为矩形,且 .请帮助该小组求出指示牌最高点 到地面 的距离(结果精确到 .参考数据: , , , .
一酒精消毒瓶如图1, 为喷嘴, 为按压柄, 为伸缩连杆, 和 为导管,其示意图如图2, , , .当按压柄 按压到底时, 转动到 ,此时 (如图 .
(1)求点 转动到点 的路径长;
(2)求点 到直线 的距离(结果精确到 .
(参考数据: , , , , ,
拓展小组研制的智能操作机器人,如图1,水平操作台为 ,底座 固定,高 为 ,连杆 长度为 ,手臂 长度为 .点 , 是转动点,且 , 与 始终在同一平面内.
(1)转动连杆 ,手臂 ,使 , ,如图2,求手臂端点 离操作台 的高度 的长(精确到 ,参考数据: , .
(2)物品在操作台 上,距离底座 端 的点 处,转动连杆 ,手臂 ,手臂端点 能否碰到点 ?请说明理由.
如图1是某中学教学楼的推拉门,已知门的宽度 米,且两扇门的大小相同(即 ,将左边的门 绕门轴 向里面旋转 ,将右边的门 绕门轴 向外面旋转 ,其示意图如图2,求此时 与 之间的距离(结果保留一位小数).(参考数据: , ,
图①、图②分别是某种型号跑步机的实物图与示意图.已知跑步机手柄 AB与地面 DE平行,踏板 CD长为1.5 m, CD与地面 DE的夹角 ,支架 AC长为1 m, ,求跑步机手柄 AB所在直线与地面 DE之间的距离.(结果精确到0.1 m.参考数据: , , , )
某工程队准备从 到 修建一条隧道,测量员在直线 的同一侧选定 , 两个观测点,如图.测得 长为 , 长为 , 长为 , , 、 、 、 在同一水平面内).
(1)求 、 两点之间的距离;
(2)求隧道 的长度.
某工程队准备从 到 修建一条隧道,测量员在直线 的同一侧选定 , 两个观测点,如图.测得 长为 , 长为 , 长为 , , 、 、 、 在同一水平面内).
(1)求 、 两点之间的距离;
(2)求隧道 的长度.
2021年,达州河边新建成了一座美丽的大桥.某学校数学兴趣小组组织了一次测桥墩高度的活动,如图,桥墩刚好在坡角为 的河床斜坡边,斜坡 长为48米,在点 处测得桥墩最高点 的仰角为 , 平行于水平线 , 长为 米,求桥墩 的高(结果保留1位小数). , , ,
图1是疫情期间测温员用"额温枪"对小红测温时的实景图,图2是其侧面示意图,其中枪柄 与手臂 始终在同一直线上,枪身 与额头保持垂直.量得胳膊 , ,肘关节 与枪身端点 之间的水平宽度为 (即 的长度),枪身 .
(1)求 的度数;
(2)测温时规定枪身端点 与额头距离范围为 .在图2中,若测得 ,小红与测温员之间距离为 .问此时枪身端点 与小红额头的距离是否在规定范围内?并说明理由.(结果保留小数点后一位)
(参考数据: , , ,
图1是放置在水平地面上的落地式话筒架实物图,图2是其示意图.支撑杆 垂直于地面 ,活动杆 固定在支撑杆上的点 处.若 , , ,求活动杆端点 离地面的高度 .(结果精确到 ,参考数据: , ,
试题篮
()