﹣(本题12分)在一平直河岸同侧有两个村庄,到的距离分别是3km和2km,.现计划在河岸上建一抽水站,用输水管向两个村庄供水.
方案设计
某班数学兴趣小组设计了两种铺设管道方案:图(1)是方案一的示意图,设该方案中管道长度为,且(其中于点);图(2)是方案二的示意图,设该方案中管道长度为,且(其中点与点关于对称,与交于点).
(1)观察计算
在方案一中, km(用含的式子表示);
在方案二中,组长小宇为了计算的长,作了如图(3)所示的辅助线,请你按小宇同学的思路计算, km(用含的式子表示).
(2)探索归纳
①当时,比较大小:(填“>”、“=”或“<”);
当时,比较大小:(填“>”、“=”或“<”);
②请你参考右边方框中的方法指导,
就(当时)的所有取值情况进
行分析,要使铺设的管道长度较短,
应选择方案一还是方案二?
学校计划选购甲、乙两种图书作为“校园读书节”的奖品.已知甲图书的单价是乙图书单价的1.5倍;用600元单独购买甲种图书比单独购买乙种图书要少10本.
(1)甲、乙两种图书的单价分别为多少元?
(2)若学校计划购买这两种图书共40本,且投入的经费不超过1050元,要使购买的甲种图书数量不少于乙种图书的数量,则共有几种购买方案?
(本题10分)若不等式组的解集是,
(1)求代数式的值;
(2)若,,为某三角形的三边长,试求的值.
上海某宾馆客房部有三人普通间和二人普通间,每间收费标准如下表所示.世博会期间,一个由50名女工组成的旅游团人住该宾馆,她们都选择了三人普通间和二人普通间,且每间正好都住满.设该旅游团人住三人普通间有x间.
(1)该旅游团人住的二人普通间有________间(用含x的代数式表示);
(2)该旅游团要求一天的住宿费必须少于4500元,且入住的三人普通间不多于二人普通间.若客房部能满
足该旅游团的要求,那么该客房部有哪几种安排方案?
客房 |
普通间(元/天) |
三人间 |
240 |
二人间 |
200 |
一次函数y=kx+b的图像经过点(0,-4)且与正比例函数y=kx的图象交于点(2,-1).
(1)分别求出这两个函数的表达式;
(2)求这两个函数的图象与x轴围成的三角形的面积;
(3)直接写出不等式kx-4≥kx的解集。
某酒厂生产A,B两种品牌的酒,每天两种酒共生产700瓶,每种酒每瓶的成本
和利润如下表所示,设每天共获利y元,每天生产A种品牌的酒x瓶.
(1)请写出y关于x的关系式;
(2)如果该厂每天至少投入成本30000元,那么每天至少获利多少元?
(3)要使每天的利润率最大,应生产A,B两种酒各多少瓶?
|
A |
B |
成本(元) |
50 |
35 |
利润(元) |
20 |
15 |
为支援四川雅安地震灾区,某市民政局组织募捐了240吨救灾物资,现准备租用甲、乙两种货车,将这批救灾物资一次性全部运往灾区,它们的载货量和租金如下表:
|
甲种货车 |
乙种货车 |
载货量(吨/辆) |
45 |
30 |
租金(元/辆) |
400 |
300 |
如果计划租用6辆货车,且租车的总费用不超过2300元,求最省钱的租车方案.
生活中,在分析研究比赛成绩时经常要考虑不等关系.例如:一射击运动员在一次比赛中将进行10次射击,已知前7次射击共中61环,如果他要打破88环(每次射击以1到10的整数环计数)的记录,问第8次射击不能少于多少环?
我们可以按以下思路分析:
首先根据最后二次射击的总成绩可能出现的情况,来确定要打破88环的记录,第8次射击需要得到的成绩,并完成下表:
最后二次射击总成绩 |
第8次射击需得成绩 |
20环 |
|
19环 |
|
18环 |
|
根据以上分析可得如下解答:
解:设第8次射击的成绩为x环,则可列出一个关于x的不等式:( )解得( )
所以第8次设计不能少于 ( )环
某校志愿者团队在重阳节购买了一批牛奶到“夕阳红”敬老院
慰问孤寡老人,如果给每个老人分5盒,则剩下38盒,如果给每个老人分6盒,则最后一
个老人不足5盒,但至少分得一盒.
(1)设敬老院有名老人,则这批牛奶共有多少盒?(用含的代数式表示).
(2)该敬老院至少有多少名老人?最多有多少名老人?
郑州市花卉种植专业户王有才承包了30亩花圃,分别种植康乃馨和玫瑰花,有关成本、销售额见下表:
种植种类 |
成本(万元/亩) |
销售额(万元/亩) |
康乃馨 |
2.4 |
3 |
玫瑰花 |
2 |
2.5 |
(1)2012年,王有才种植康乃馨20亩、玫瑰花10亩,求王有才这一年共收益多少万元?(收益=销售额-成本)
(2)2013年,王有才继续用这30亩花圃全部种植康乃馨和玫瑰花,计划投入成本不超过70万元.若每亩种植的成本、销售额与2012年相同,要获得最大收益,他应种植康乃馨和玫瑰花各多少亩?
(3)已知康乃馨每亩需要化肥500kg,玫瑰花每亩需要化肥700kg,根据(2)中的种植亩数,为了节约运输成本,实际使用的运输车辆每次装载化肥的总量是原计划每次装载总量的2倍,结果运输全部化肥比原计划减少2次.求王有才原定的运输车辆每次可装载化肥多少千克?
2013年4月20日,四川雅安发生7.0级地震,给雅安人民的生命财产带来巨大损失.某市民政部门将租用甲、乙两种货车共16辆,把粮食266吨、副食品169吨全部运到灾区.已知一辆甲种货车同时可装粮食18吨、副食品10吨;一辆乙种货车同时可装粮食16吨、副食11吨.
(1)若将这批货物一次性运到灾区,有哪几种租车方案?
(2)若甲种货车每辆需付燃油费1500元;乙种货车每辆需付燃油费1200元,应选(1)中的哪种方案,才能使所付的费用最少?最少费用是多少元?
小明参加学校组织的知识竞赛,共有道题.答对一题记分,答错(或不答)一题记分,小明参加本次竞赛要超过分,他至少要答对多少道题?
对x,y定义一种新运算T,规定:T(x,y)=(其中a、b均为非零常数),这里等式右边是通常的四则运算,例如:T(0,1)==b.
(1)已知T(1,-1)=-2,T(4,2)=1.
①求a,b的值;
②若关于m的不等式组恰好有3个整数解,求实数p的取值范围;
(2)若T(x,y)=T(y,x)对任意实数x,y都成立(这里T(x,y)和T(y,x)均有意义),则a,b应满足怎样的关系式?
试题篮
()