优题课 - 聚名师,上好课(www.youtike.com)
  首页 / 试题库 / 初中数学试题 / 二次函数在给定区间上的最值 / 解答题
初中数学

已知抛物线y=a(x﹣3)2+2经过点(1,﹣2).
(1)求a的值;
(2)若点A(m,y1)、B(n,y2)(m<n<3)都在该抛物线上,试比较y1与y2的大小.

  • 题型:未知
  • 难度:未知

已知,当m为何值时,是二次函数?

  • 题型:未知
  • 难度:未知

(1)探究新知:
①如图1,已知AD∥BC,AD=BC,点M,N是直线CD上任意两点.
求证:△ABM与△ABN的面积相等.
②如图2,已知AD∥BE,AD=BE,AB∥CD∥EF,点M是直线CD上任一点,点G是直线EF上任一点,试判断△ABM与△ABG的面积是否相等,并说明理由.
(2)结论应用:
如图3,抛物线y=ax2+bx+c的顶点为C(1,4),交x轴于点A(3,0),交y轴于点D,试探究在抛物线y=ax2+bx+c上是否存在除点C以外的点E,使得△ADE与△ACD的面积相等?若存在,请求出此时点E的坐标;若不存在,请说明理由.

  • 题型:未知
  • 难度:未知

已知二次函数 的图象经过点(1,0)和(-5,0)两点,顶点纵坐标为,求这个二次函数的解析式。

  • 题型:未知
  • 难度:未知

如图,抛物线与x轴交于A、B两点,与y轴交C点,点A的坐标为(2,0),点C的坐标为(0,3)它的对称轴是直线

(1)求抛物线的解析式;
(2)M是线段AB上的任意一点,当△MBC为等腰三角形时,求M点的坐标.

  • 题型:未知
  • 难度:未知

如图.已知二次函数y=﹣x2+bx+3的图象与x轴的一个交点为A(4,0),与y轴交于点B.
求此二次函数关系式和点B的坐标
在x轴的正半轴上是否存在点P.使得△PAB是以AB为底边的等腰三角形?若存在,求出点P的坐标;若不存在,请说明理由.

  • 题型:未知
  • 难度:未知

如图,在平面直角坐标系中,已知点A(0,1)、B(3,5),以AB为边作如图所示的正方形ABCD,顶点在坐标原点的抛物线恰好经过点D,P为抛物线上的一动点.

(1)直接写出点D的坐标;
(2)求抛物线的解析式;
(3)求点P到点A的距离与点P到x轴的距离之差;
(4)当点P位于何处时,△APB的周长有最小值,并求出△APB的周长的最小值.

  • 题型:未知
  • 难度:未知

抛物线y=﹣x2+(m﹣1)x+m与y轴交于点(0,3).
(1)求抛物线的解析式;
(2)求抛物线与坐标轴的交点坐标;
(3)①当x取什么值时,y>0?②当x取什么值时,y的值随x的增大而减小?

  • 题型:未知
  • 难度:未知

已知二次函数y=ax2+bx-3的图象经过点A(2,-3),B(-1,0).求二次函数的解析式

  • 题型:未知
  • 难度:未知

如图,抛物线经过A(4,0)、B(1,0)、C(0,-2)三点.

(1)求出抛物线的解析式;
(2)在直线AC上方的抛物线上有一动点D,当△ACD的面积最大时,求出点D的坐标;
(3)P是抛物线上一动点,过P作PM⊥x轴,垂足为M,是否存在P点,使得以A,P,M为顶点的三角形与△OAC相似?若存在,请求出符合条件的点P的坐标;若不存在,请说明理由.

  • 题型:未知
  • 难度:未知

已知抛物线的图像经过点O(0,0)A(6,0)。
(1)b =     ,c =    
(2)点B是x正半轴上的一动点,以OB为边在第一象限作一个正方形OBCD,使其一个顶点在抛物线上(不包括B点  ),画出示意图,求点B的坐标;
(3)在(2)的条件下,点E是线段BC上的一个动点,连结DE交线段AC与点F,则线段DF是否存在最小值,如果存在,请求出结果,如果不存在,请说明理由;

  • 题型:未知
  • 难度:未知

在直角梯形ABCD中,∠D=90°,高CD=cm(如图1),动点P、Q同时从点A出发,点P沿AB、BC运动到点C停止,速度为1cm/s,点Q沿AD运动到点D停止,速度为2cm/s,而点P到达点B时,点Q正好到达点D,设P、Q同时从A点出发的时间为t(s)时,△APQ的面积为y(cm2)所形成的函数图象如图(2)所示,其中MN表示一条平行于X轴的线段.

(1)求出BC的长和点M的坐标.
(2)当点P在线段AB上运动时,直线PQ截梯形所得三角形部分沿PQ向上折叠,设折叠后与梯形重叠部分的面积为S cm2,请求出S与t的函数关系式.
(3)在P、Q的整个运动过程中,将直线PQ截梯形所得三角形部分沿PQ折叠.是否存在某一时刻,使得折叠后与梯形重叠部分的面积为直角梯形ABCD面积的?若存在,求出t的值;若不存在,试说明理由.

  • 题型:未知
  • 难度:未知

如图,抛物线轴交于A(﹣2,0),B(6,0)两点.

(1)求该抛物线的解析式;
(2)求该抛物线的对称轴以及顶点坐标;
(3)点P为y轴右侧抛物线上一个动点,若S△PAB=32,
求出此时P点的坐标.

  • 题型:未知
  • 难度:未知

已知二次函数y=-x2+bx+c的图象如图所示,求此二次函数的解析式和抛物线的顶点坐标.

  • 题型:未知
  • 难度:未知

市政府大力扶持大学生创业.李明在政府的扶持下投资销售一种进价为每件20元的护眼台灯.销售过程中发现,每月销售量y(件)与销售单价x(元)之间的关系可近似的看作一次函数:.设李明每月获得利润为w(元),当销售单价定为多少元时,每月可获得最大利润?

  • 题型:未知
  • 难度:未知

初中数学二次函数在给定区间上的最值解答题