已知:关于x的一元二次方程mx 2-(3m+2)x+2m+2=0(m>0).
(1)求证:方程有两个不相等的实数根;
(2)设方程的两个实数根分别为x 1,x 2(其中x 1< x 2).若y是关于x的函数,且y=x 2-2x 1,求这个函数的解析式.
已知一个二次函数y=ax 2+bx+c的图象如图所示,请求出这个二次函数的解析式。
杂技团进行杂技表演,演员从跷跷板右端A处弹跳到人梯顶端椅子B处,其身体(看成一点)的路线是抛物线y=-3/5X2+3X+1的一部分,如图.
(1)求演员弹跳离地面的最大高度;
(2)已知人梯高BC=3.4米,在一次表演中,人梯到起跳点A的水平距离是4米,问这次表演是否成功?请说明理由.
直线y=x+m和抛物线y=x2+bx+c都经过点A(1,0),B(3,2).
(1)求m的值和抛物线的解析式;
(2)求不等式x2+bx+c>x+m的解集.(直接写出答案)
如图所示,二次函数y=ax2+bx+c(a≠0)的图象与x轴交于A、B两点,与y轴交于C(0,2),若∠ACB=90°,BC=.
试求:(1)A、B两点的坐标;
(2)二次函数的表达式.
已知二次函数.
(1)求该函数图象的顶点坐标.
(2)求此抛物线与轴的交点坐标.
如图,二次函数y=﹣x2+bx+c的图象经过坐标原点,且与x轴交于A(﹣2,0).
(1)求此二次函数解析式及顶点B的坐标;
(2)在抛物线上有一点P,满足S△AOP=3,直接写出点P的坐标.
如图,二次函数y=-x2+nx+n2-9(n为常数)的图像经过坐标原点和x轴上另一点A,顶点在第一象限.
(1)求n的值和点A坐标;
(2)已知一次函数y=-2x+b(b >0)分别交x轴、y轴于M、N两点.点P是二次函数图像的y轴右侧部分上的一个动点,若PN⊥NM于N点,且△PMN与△OMN相似,求点P坐标.
已知二次函数y=ax2+bx+1的图像经过(1,2),(2,4)两点.
(1)求a、b值;(2)试判断该函数图像与x轴的交点情况,并说明理由.
如图:△ABC是边长为4的等边三角形,AB在X轴上,点C在第一象限,AC与Y轴交于点D,点A的坐标为(-1,0)
(1)求 B、C、D三点的坐标;
(2)抛物线经过B、C、D三点,求它的解析式;
将Rt△ABC和Rt△DEF按图1摆放(点F与点A重合),点A、E、F、B在同一直线上,∠ACB=∠DEF=90°,∠BAC=∠D=30°,BC=8cm,EF=6cm.
如图2,△DEF从图1位置出发,以1cm/s的速度沿射线AB下滑,DE与AC相交于点H,DF与AC相交于点G,设下滑时间为t(s)(0<t≤6).
(1)当t为何值时,点G在线段AE的垂直平分线上?
(2)是否存在某一时刻t,使B、C、D三点在同一条直线上,若存在,求出t的值;若不存在,请说明理由;
(3)设△DEF与△ABC的重合部分的面积为S,直接写出S与t之间的函数关系式以及S的最大值(不需要给出解答过程).
已知二次函数
(1)该函数图像的对称轴是 ,顶点坐标 ;
(2)选取适当的数据填入下表,并描点画出函数图像;
x |
… |
|
|
|
|
|
… |
y |
… |
|
|
|
|
|
… |
(3)求抛物线与坐标轴的交点坐标;
(4)利用图象直接回答当x为何值时,函数值y大于0?
如图,抛物线交x轴于A,B两点(A在B左侧),交y轴于点C.已知一次函数y=kx+b的图象过点A,C.
(1)求抛物线的对称轴和一次函数的解析式;
(2)根据图象,写出满足kx+b>的x的取值范围;
(3)在平面直角坐标系xoy 中是否存在点P,与A、B、C三点构成一个平行四边形?若存在,请写出点P的坐标;若不存在,请说明理由.
随着农业科技的不断发展,农田灌溉也开始采用喷灌的形式(如图甲).在田间安装一个离开地面一定高度且垂直于地面的喷头,喷头可旋转360.,喷出的水流呈抛物线形状.
如图乙,用OA表示垂直于地面MN的喷头,米,水流在与OA的距离10米时达到最高点,这时最高点离地面5米.如果不计其它因素,当喷头环绕一周后,能喷灌的最大直径是多少米(结果精确到0.1,参考数据)?
试题篮
()