已知抛物线y=-mx2+4x+2m与x轴交于点A(α,0), B(β,0),且.
(1)求抛物线的解析式.
(2)抛物线的对称轴为l,与y轴的交点为C,顶点为D,点C关于l的对称点为E.是否存在x轴上的点M、y轴上的点N,使四边形DNME的周长最小?若存在,请画出图形(保留作图痕迹),并求出周长的最小值;若不存在,请说明理由.
(3)若点P在抛物线上,点Q在x轴上,当以点D、E、P、Q为顶点的四边形是平行四边形时,求点P的坐标.
如图,已知一条直线过点,且与抛物线交于A,B两点,其中点A的横坐标是.
(1)求这条直线的函数关系式及点B的坐标;
(2)在x轴上是否存在点C,使得△ABC是直角三角形?若存在,求出点C的坐标;若不存在,请说明理由;
(3) 过线段AB上一点P,作PM //x轴,交抛物线于点M,点M在第一象限,点N,当点M的横坐标为何值时,的长度最大?最大值是多少?
如图,在平面直角坐标系中,点M的坐标是(5,4),⊙M与y轴相切于点C,与x轴相交于A、B两点.
(1)则点A、B、C的坐标分别是A(__,__),B(__,__),C(__,__);
(2)设经过A、B两点的抛物线解析式为,它的顶点为F,求证:直线FA与⊙M相切;
(3)在抛物线的对称轴上,是否存在点P,且点P在x轴的上方,使△PBC是等腰三角形.如果存在,请求出点P的坐标;如果不存在,请说明理由.
一块材料的形状是锐角三角形ABC,边BC=120mm,高AD=80mm,把它加工成正方形零件如图1,使正方形的一边在BC上,其余两个顶点分别在AB、AC上.
(1)求证:△AEF∽△ABC;
(2)求这个正方形零件的边长;
(3)如果把它加工成矩形零件如图2,问这个矩形的最大面积是多少?
(本题14分)如图,在平面直角坐标系内,正方形AOBC顶点C的坐标为(2,2),过点B的直线∥OC,P是直线上一个动点,抛物线过O、C、P三点.
(1)填空:直线的函数解析式为 ;的关系式是 .
(2)当△PBC是等腰Rt△时,求抛物线的解析式 ;
(3)当抛物线的对称轴与正方形有交点时,直接写出点P横坐标的取值范围 .
(本题12分)学校计划选购甲、乙两种图书作为“校园读书节”的奖品.已知甲图书的单价是乙图书单价的1.5倍;用600元单独购买甲种图书比单独购买乙种图书要少10本.
(1)甲、乙两种图书的单价分别为多少元?
(2)若学校计划购买这两种图书共40本,其中甲种图书a本,投入的经费为W元,
①请写出W关于a的函数关系式;
②若投入的经费不超过1050元,且使购买的甲种图书数量不少于乙种图书的数量,则共有几种购买方案? 并求出最节省的购买方案和最节省经费;
(3)若学校计划购买这两种图书总数超过30本,其中甲种图书a本,乙种图书b本,
且投入的经费恰好为690元,则b= ( 写出两种可能的值).
已知抛物线L1:和抛物线L2:,其中,抛物线L2与x轴相交于A、B两点,其图像如图所示.
(1)下列说法你认为正确的序号是 ;
①抛物线L1和L2与轴交于同一点F; ② 抛物线L1和L2开口都向上;
③抛物线L1和L2的对称轴是同一条直线; ④ A (-5,0), B(-1,0)
(2)抛物线L1和L2相交于点E、F,当的值发生变化时,请判断线段EF的长度是否发生变化,并说明理由;
(3)在(2)中,若抛物线L1的顶点为M,抛物线L2的顶点为N. 问是否存在实数,使MN=2EF,如存在,求出实数,如不存在,请说明理由.
在平面直角坐标系中,抛物线经过坐标原点O、点A(2,2)和点B(4,0)三个点,连接OA、OB.得到△OAB,点E在OA边上从点O向点A匀速运动(其中点E不与点A、O重合),同时点F以相同的速度在AB边上从点A向点B运动.
(1)求出该抛物线的解析式.
(2)若点C是线段OB的中点,连接CE、EF、FC,如图所示;
①在点E运动的过程中,四边形AECF的面积是否会随着点E位置的改变而发生变化?如果变化请说明理由;如果不变,请求出四边形AECF的面积;
②在点E运动的过程中,点A到线段EF的距离是否存在最大值,如果存在请求出最大距离;如果不存在,请说明理由.
如图,已知等边三角形ABC的边长为2,E、F、G分别是边AB、BC、CA的点,且AE=BF=CG,设△EFG的面积为,AE的长为,则与的函数图象大致是( )
(本小题满分14分)根据下列要求,解答相关问题.
(1)请补全以下求不等式的解集的过程.
①构造函数,画出图象:根据不等式特征构造二次函数;并在下面的坐标系中(见图1)画出二次函数的图象(只画出图象即可).
②求得界点,标示所需:当y=0时,求得方程的解为 ;并用锯齿线标示出函数图象中y≥0的部分.
③借助图象,写出解集:由所标示图象,可得不等式的解集为 .
(2)利用(1)中求不等式解集的步骤,求不等式的解集.
①构造函数,画出图象:
②求得界点,标示所需:
③借助图像,写出解集:
(3)参照以上两个求不等式解集的过程,借助一元二次方程的求根公式,直接写出关于x的不等式
的解集.
(本小题满分10分)一种进价为每件40元的T恤,若销售单价为60元,则每周可卖出300件.为提高利润,欲对该T恤进行涨价销售.经过调查发现:每涨价1元,每周要少卖出10件.请确定该T恤涨价后每周的销售利润y(元)与销售单价x(元)之间的函数关系式,并求销售单价定为多少元时,每周的销售利润最大?
如图,已知二次函数:()和二次函数:()图象的顶点分别为M,N,与y轴分别交于点E,F.
(1)函数()的最小值为 ,当二次函数,的y值同时随着x的增大而减小时,x的取值范围是 ;
(2)当EF=MN时,求a的值,并判断四边形ENFM的形状(直接写出,不必证明);
(3)若二次函数的图象与x轴的右交点为A(m,0),当△AMN为等腰三角形时,求方程的解.
如图,已知二次函数L1:y=ax2-2ax+a+3(a>0)和二次函数L2:y=-a(x+1)2+1(a>0)图像的顶点分别为M,N,与y轴分别交于点E,F.
(1)函数y=ax2-2ax+a+3(a>0)的最小值为 ;当二次函数L1,L2的y值同时随着x的增大而减小时,x的取值范围是 ;
(2)当EF=MN时,求a的值,并判断四边形ENFM的形状(直接写出,不必证明);
(3)若二次函数L2的图象与x轴的右交点为A(m,0),当△AMN为等腰三角形时,求方程-a(x+1)2+1=0的解.
已知二次函数的图像经过点,对称轴是经过且平行于轴的直线。
(1)求、的值
(2)如图,一次函数的图像经过点,与轴相交于点,与二次函数的图像相交于另一点B,点B在点P的右侧,, 求一次函数的表达式。
已知关于x的一元二次方程:
(1)试判断原方程根的情况;
(2)若抛物线与轴交于两点,则,两点间的距离是否存在最大或最小值?若存在,求出这个值;若不存在,请说明理由.(友情提示:)
试题篮
()