有这样一个问题:探究函数的图象与性质.
小东根据学习函数的经验,对函数的图象与性质进行了探究.
下面是小东的探究过程,请补充完整:
(1)函数的自变量x的取值范围是____;
(2)下表是y与x的几组对应值.
求m的值:
(3)如下图,在平面直角坐标系xOy中,描出了以上表中各对对应值为坐标的点.根据描出的点,画出该函数的图象:
(4)进一步探究发现,该函数图象在第一象限内的最低点的坐标是,结合函数的图象,写出该函数的其它性质(一条即可):_________.
已知:抛物线y=x²+bx+c经过点(2,-3)和(4,5).
(1)求抛物线的表达式及顶点坐标;
(2)将抛物线沿x轴翻折,得到图像G,求图像G的表达式;
(3)在(2)的条件下,当-2<x<2时,直线y=m与该图像有一个公共点,求m的值或取值范围.
在平面直角坐标系xOy中,抛物线与轴交于点A(0,3),与轴交于点B,C(点B在点C左侧).
(1)求该抛物线的表达式及点B,C的坐标;
(2)抛物线的对称轴与轴交于点D,若直线经过点D和点E,求直线DE的表达式;
(3)在(2)的条件下,已知点P(,0),过点P作垂直于轴的直线交抛物线于点M,交直线DE于点N,若点M和点N中至少有一个点在轴下方,直接写出的取值范围.
如图1,若抛物线L1的顶点A在抛物线L2上,抛物线L2的顶点B也在抛物线L1上(点A与点B不重合),我们把这样的两抛物线L1、L2互称为“友好”抛物线.
(1)一条抛物线的“友好”抛物线有_______条.
A.1 | B.2 | C.3 | D.无数 |
(2)如图2,已知抛物线L3:与y轴交于点C,点C关于该抛物线对称轴的对称点为D,请求出以点D为顶点的L3的“友好”抛物线L4的表达式;
(3)若抛物线的“友好”抛物线的解析式为,请直接写出与的关系式为 .
已知关于x的一元二次方程 (k≠0).
(1)求证:无论k取何值,方程总有两个实数根;
(2)点在抛物线上,其中,且和k均为整数,求A,B两点的坐标及k的值;
(3)设(2)中所求抛物线与y轴交于点C,问该抛物线上是否存在点E,使得,若存在,求出E点坐标,若不存在,说明理由.
已知二次函数.
(1)二次函数的顶点在轴上,求的值;
(2)若二次函数与轴的两个交点A、B均为整数点(坐标为整数的点),当为整数时,求A、B两点的坐标.
(本题12分)已知抛物线y=+c与x轴交于A(-1,0),B两点,交y轴于点C
(1)求抛物线的解析式
(2)点E(m,n)是第二象限内一点,过点E作EF⊥x轴交抛物线于点F,过点F作FG⊥y轴于点G,连接CE、CF,若∠CEF=∠CFG,求n的值并直接写出m的取值范围(利用图1完成你的探究)
(3)如图2,点P是线段OB上一动点(不包括点O、B),PM⊥x轴交抛物线于点M,∠OBQ=∠OMP,BQ交直线PM于点Q,设点P的横坐标为t,求△PBQ的周长
如图,在平面直角坐标系中,平行四边形如图放置,将此平行四边形绕点O顺时针旋转90°得到平行四边形.抛物线经过点A、C、A′三点.
(1)求A、A′、C三点的坐标;
(2)求平行四边形和平行四边形重叠部分的面积;
(3)点M是第一象限内抛物线上的一动点,问点M在何处时,的面积最大?最大面积是多少?并写出此时M的坐标.
某公司新开发一种电子产品,现准备从国内和国外两种销售方案中选择一种进行销售.若只在国内销售,销售价格y(元/件)与月销量x(件)的函数关系式为y =x+150,成本为20元/件,无论销售多少,每月还需支出广告费62500元,设月利润为w内(元)(利润= 销售额-成本-广告费).若只在国外销售,销售价格为150元/件,受各种不确定因素影响,成本为a元/件(a为常数,10≤a≤40),当月销量为x(件)时,每月还需缴纳x2元的附加费,设月利润为w外(元)(利润=销售额-成本-附加费).
(1)若在国内销售,当月销售量为1000件时,该产品的销售价格和月利润分别是多少元?当月销售量为多少件时,在国内销售的月利润最大?最大利润是多少?
(2)若在国外销售月利润的最大值与在国内销售月利润的最大值相同,求a的值;
(3)如果某月要将5000件产品全部销售完,请你通过分析帮公司决策,选择在国内还是在国外销售才能使所获月利润较大?
九(1)班数学兴趣小组经过市场调查,整理出某种商品在第x(1≤x≤90)天的售价与销量的相关信息如下表:
时间x(天) |
1≤x<50 |
50≤x≤90 |
售价(元/件) |
x+40 |
90 |
每天销量(件) |
200﹣2x |
已知该商品的进价为每件30元,设销售该商品的每天利润为y元.
(1)求出y与x的函数关系式;
(2)问销售该商品第几天时,当天销售利润最大,最大利润是多少?
(3)该商品在销售过程中,共有多少天每天销售利润不低于4800元?请直接写出结果.
为了考察冰川融化的状况,一支科考队在某冰川上设定一个以大本营O为圆心,半径为4km 圆形考察区域,线段P1P2是冰川的部分边界线(不考虑其它边界),当冰川融化时,边界线沿着与其垂直的方向朝考察区域平行移动.若经过n年,冰川的边界线P1P2移动的距离为s(km),并且s与n(n为正整数)的关系是.以O为原点,建立如图所示的平面直角坐标系,其中P1、P2的坐标分别是(-4,9)、(-13,-3).
(1)求线段P1P2所在的直线对应的函数关系式;
(2)求冰川的边界线移动到考察区域所需要的最短时间.
今年我市的蔬菜市场从5月份开始,由于本地蔬菜的上市,某种蔬菜的平均销售价格y(元/千克)从5月第1周的2.8元/千克下降至第2周的2.4元/千克,且y与周数x的变化情况满足二次函数:.
(1)求出5月份y与x所满足的二次函数关系式;
(2)若5月份的进价m(元/千克)与周数x所满足的函数关系为.求出5月份销售此种蔬菜一千克的利润W(元)与周数x的函数关系式,并求出在哪一周销售此种蔬菜一千克的利润最大?且最大利润是多少?
(本题12分) 如图,已知直线与轴交于点,与轴交于点,抛物线与直线交于、两点,与轴交于、两点,且点坐标为(1,0).
(1)求该抛物线的解析式;
(2)动点在轴上移动,当△是直角三角形时,直接写出点的坐标;
(3)在抛物线的对称轴上找一点,使||的值最大,求出点的坐标.
如图,在平面直角坐标系中,抛物线经过点(1,﹣1),且对称轴为在线,点P、Q均在抛物线上,点P位于对称轴右侧,点Q位于对称轴左侧,PA垂直对称轴于点A,QB垂直对称轴于点B,且QB=PA+1,设点P的横坐标为.
(1)求这条抛物线所对应的函数关系式;
(2)求点Q的坐标(用含的式子表示);
(3)请探究PA+QB=AB是否成立,并说明理由;
(4)抛物线()经过Q、B、P三点,若其对称轴把四边形PAQB分成面积为1:5的两部分,直接写出此时的值.
如图,顶点为P(4,-4)的二次函数图象经过原点(0,0),点A在该图象上,OA交其对称轴于点M,点M、N关于点P对称,连接AN、ON
(1)求该二次函数的关系式.
(2)若点A的坐标是(6,-3),求△ANO的面积.
试题篮
()