如图,已知一次函数的图象与轴交于点A,与二次函数的图象交于轴上的一点B,二次函数的图象与轴只有唯一的交点C,且OC=2.
求二次函数的解析式;
设一次函数的图象与二次函数的图象的另一交点为D,已知P为轴上的一个动点,且△PBD为直角三角形,求:点P的坐标.
如图,某农户想利用自家院子一面墙和20米长的篱笆围成一个矩形养鸡场,并留出一个1米宽的口子用来进出.
若围成的养鸡场面积为,求围成的养鸡场的长和宽;
请用配方法,求出能围成的矩形养鸡场的最大面积,并说明设计方案.
如图,抛物线与x轴交于A、B两点,与y轴交于C点,四边形OBHC为矩形,CH的延长线交抛物线于点D(5,2),连结BC、AD.
求C点的坐标及抛物线的解析式;
将△BCH绕点B按顺时针旋转90°后再沿x轴对折得到△BEF(点C与点E对应),判断点E是否落在抛物线上,并说明理由;
设过点E的直线交AB边于点P,交CD边于点Q. 问是否存在点P,使直线PQ分梯形ABCD的面积为1∶3两部分?若存在,求出P点坐标;若不存在,请说明理由
如图,四边形ABCD是平行四边形,AB=4,OB=2,抛物线过A、B、C三点,与x轴交于另一点D.一动点P以每秒1个单位长度的速度从B点出发沿BA向点A运动,运动到点A停止,同时一动点Q从点D出发,以每秒3个单位长度的速度沿DC向点C运动,与点P同时停止.
求抛物线的解析式;
若抛物线的对称轴与AB交于点E,与x轴交于点F,当点P运动时间t为何值时,四边形POQE是等腰梯形?
当t为何值时,以P、B、O为顶点的三角形与以点Q、B、O为顶点的三角形相似?
某企业获准生产“上海世博会”纪念徽章,若生产A种款式的纪念徽章125件,B种款式的纪念徽章150件,需生产成本700元;若生产A种款式的纪念徽章100件,B种款式的纪念徽章450件,需生产成本1550元.已知A、B两种纪念徽章的市场零售价分别为2.3元,3.5元
求每个A、B两种款式的纪念徽章的成本是多少元?
随着上海世博会的开幕,为了满足市场的需要,该企业现在每天要生产A、B两种款式的纪念徽章共4500件,若要求每天投入成本不超过10000元,并且每天生产的B种款式的纪念徽章不少于A种款式纪念徽章的.那么每天最多获利多少元,最少获利多少元?获利最多的方案如何设计?
如图,已知二次函数y= -x2+bx+3的图象与x轴的一个交点为A(4,0),与y轴交于点B.
求此二次函数关系式和点B的坐标;
在x轴的正半轴上是否存在点P,使得△PAB是以AB为底的等腰三角形?若存在,求出点P的坐标;若不存在,请说明理由.
如图,面积为39的直角梯形OABC的直角顶点C在轴上,点C坐标为,AB=,点D是AB边上的一点,且AD:BD=2︰3.有一45°的角的顶点E在轴上运动,角的一边过点D,角的另一边与直线OA交于点F(点D、E、F按顺时针排列),连结DF.设CE=,OF=.
(1)求点D的坐标及的度数;
(2)若点E在轴正半轴上运动,求与的函数关系式;
(3)在点E的运动过程中,是否存在某一时刻,使得△DEF成为等腰三角形?若存在,请求出所有符合条件的点F的坐标;若不存在,请说明理由.
如图,在平面直角坐标系中,等腰直角三角形OMN的斜边ON在x轴上,顶点M的坐标为(3,3),MH为斜边上的高.过N点垂直于x轴的直线与抛物线y=" -" 4x点D.直线OD的解析式为,点P(x,o)是x轴上一动点,过点P作y轴的平行线,交射线OM与点E.
直接写出点D的坐标及n的值
判断抛物线的顶点是否在直线OM上?并说明理由
设以M、E、H、N为顶点的四边形的面积为S.当x≠3[时,求S与x的函数关系式.
如图,把…张长10cm,宽8cm的矩形硬纸枥的四周各剪去一个同样大小的正方形,再折合成一个无盖的长方体盒子(纸板的厚度忽略不计).
要使长方体盒子的底面积为48cm2,那么剪去的正方形的边长为多少?
你感到折合而成的长方体盒子的侧面积(不含底面)会不会有最大的情况?如果有,请你求出最大值和此时剪去的正方形的边长;如果没有,请你说明理由
已知抛物线y=ax2+x+2.
当a=-1时,求此抛物线的顶点坐标和对称轴
若代数式-x2+x+2的值为正整数,求x的值;
若a是负数时,当a=a1时,抛物线y=ax2+x+2与x轴的正半轴相交于点M(m,0);当a=a2时,抛物线y=ax2+x+2与x轴的正半轴相交于点N(n,0). 若点M在点N的左边,试比较a1与a2的大小.
已知:如图,在平面直角坐标系中,矩形OABC的边OA在轴的正半轴上,OC在轴的正半轴上,OA=2,OC=3。过原点O作∠AOC的平分线交AB于点D,连接DC,过点D作DE⊥DC,交OA于点E。
(1)求过点E、D、C的抛物线的解析式;
(2)将∠EDC绕点D按顺时针方向旋转后,角的一边与轴的正半轴交于点F,另一边与线段OC交于点G。如果DF与(1)中的抛物线交于另一点M,点M的横坐标为,那么EF=2GO是否成立?若成立,请给予证明;若不成立,请说明理由;
(3)对于(2)中的点G,在位于第一象限内的该抛物线上是否存在点Q,使得直线GQ与AB的交点P与点C、G构成的△PCG是等腰三角形?若存在,请求出点Q的坐标;若不存在,请说明理由。
如图,抛物线与轴交于A、B两点,与y轴交于C点,且.
求抛物线的解析式及顶点D的坐标;
点是轴上的一个动点,当的值最小
时,求的值.
已知:抛物线y=-x2+2x+m-2交y轴于点A(0,2m-7).与直线
y=x交于点B、C(B在右、C在左).
求抛物线的解析式
设抛物线的顶点为E,在抛物线的对称轴上是否存在一点F,使得,若存在,求出点F的坐标,若不存在,说明理由
射线OC上有两个动点P、Q同时从原点出发,分别以每秒个单位长度、每秒2个单位长度的速度沿射线OC运动,以PQ为斜边在直线BC的上方作直角三角形PMQ(直角边分别平行于坐标轴),设运动时间为t秒,若△PMQ与抛物线y=-x2+2x+m-2有公共点,求t的取值范围.
如图,Rt△AOC中,∠ACO=90°,∠AOC=30°.将Rt△AOC绕OC中点E按顺时针方向旋转180°后得到Rt△BCO,BO、CO恰好分别在y轴、x轴上.再将Rt△BCO沿y轴对折得到Rt△BDO.取BC中点F,连接DF,交AB于点G,将△BDG沿DF对折得到△KDG.直线DK交AB于点H.
填空:CE:ED=________,AB:AC=__________;
若BH=,求直线BD解析式
在(2)的条件下,一抛物线过点D、点E、点B,此抛物线位于直线BD上方有一动点Q,△BDQ的面积有无最大值?若有,请求出点Q的坐标;若无,请说明理由
试题篮
()