优题课 - 聚名师,上好课(www.youtike.com)
  首页 / 试题库 / 初中数学试题 / 二次函数在给定区间上的最值 / 解答题
初中数学

某跳水运动员进行10米跳台跳水训练时,身体(看成一点)在空中的运动路线是如图所示坐标系下经过原点O的一条抛物线(图中标出的数据为已知条件).在跳某个规定动作时,正常情况下,该运动员在空中的最高处距水面米,入水处距池边的距离为4米,运动员在距水面高度为5米以前,必须完成规定的翻腾动作,并调整好入水姿势,否则就会出现失误.
求这条抛物线的解析式;
在某次试跳中,测得运动员在空中的运动路线是(1)中的抛物线,且运动员在空中完成规定的翻腾动作并调整好入水姿势时,距池边的水平距离为米,问此次跳水会不会失误?并通过计算说明理由.

  • 题型:未知
  • 难度:未知

已知:如图,二次函数y=a(x+1)2-4的图象与x轴分别交于A、B两点,与y轴交于点D,点C是二次函数y=a(x+1)2-4的图象的顶点,CD=.
求a的值
点M在二次函数y=a(x+1)2-4图象的对称轴上,且∠AMC=∠BDO,求点M的坐标.
将二次函数y=a(x+1)2-4的图象向下平移k(k>0)个单位,平移后的图象与直线CD分别交于E、F两点(点F在点E左侧),设平移后的二次函数的图象的顶点为C1,与y轴的交点为D1,是否存在实数k,使得CF⊥FC1,若存在,求出k的值;若不存在,请说明理由.

  • 题型:未知
  • 难度:未知

如图,已知抛物线y=x2+bx+c与x轴交于A、B两点(A点在B点左侧),
与y轴交于点C(0,-3),对称轴是直线x=1,直线BC与抛物线的对称轴交于点D.
求抛物线的函数表达式
求直线BC的函数表达式
点E为y轴上一动点,CE的垂直平分线交CE于点F,交抛物线于P、Q两点,且点P在第三象限.
①当线段PQ=AB时,求tan∠CED的值;
②当以点C、D、E为顶点的三角形是直角三角形时,请直接写出点P的坐标。

  • 题型:未知
  • 难度:未知

某公司准备投资开发A、B两种新产品,通过市场调研发现:如果单独投资A种产品,则所获利润(万元)与投资金额(万元)之间满足正比例函数关系:;如果单独投资B种产品,则所获利润(万元)与投资金额(万元)之间满足二次函数关系:.根据公司信息部的报告,(万元)与投资金额(万元)的部分对应值如下表所示

填空:                                      
如果公司准备投资20万元同时开发A、B两种新产品,设公司所获得的总利润为w(万元),试写出w与某种产品的投资金额n之间的函数关系式;
请你设计一个在⑵中能获得最大利润的投资方案

  • 题型:未知
  • 难度:未知

如图,抛物线y=x2+bx-2与x轴交于A、B两点,与y 轴交于C点,且A(一1,0).

求抛物线的解析式及顶点D的坐标;
若将上述抛物线先向下平移3个单位,再向右平移2个单位,
请直接写出平移后的抛物线的解析式.

  • 题型:未知
  • 难度:未知

如图,在平面直角坐标系中,抛物线经过A(3,0),B(0,-3)两点,点P是直线AB上一动点,过点P作轴的垂线交抛物线于点M,设点P的横坐标为t,
分别求直线AB和这条抛物线的解析式
若点P在第四象限,连结BM、AM,当线段PM最长时,求的面积。
③ 是否存在这样的点P,使得以点P、M、B、O为顶点的四边形为平行四边形?若存在,请直接写出点P的横坐标;若不存在,请说明理由。

  • 题型:未知
  • 难度:未知

如图,抛物线与x轴交于A(x1,0),B(x2,0)两点,且x1>x2,与y轴交于点C(0,4),其中x1,x2是方程x2-2x-8=0的两个根.
求这条抛物线的解析式;
点P是线段AB上的动点,过点P作PE∥AC,交BC于点E,连接CP,当△CPE的面积最大时,求点P的坐标;
探究:若点Q是抛物线对称轴上的点,是否存在这样的点Q,使△QBC成为等腰三角形,若存在,请直接写出所有符合条件的点Q的坐标;若不存在,请说明理由.

  • 题型:未知
  • 难度:未知

连接上海市区到浦东国际机场的磁悬浮轨道全长约为,列车走完全程包含启动加速、匀速运行、制动减速三个阶段.已知磁悬浮列车从启动加速到稳定匀速动行共需秒,在这段时间内记录下下列数据:

时间(秒)
0
50
100
150
200
速度(米/秒)
0
30
60
90
120
路程(米)
0
750
3000
6750
12000

请你在一次函数、二次函数和反比例函数中选择合适的函数来分别表示在加速阶段()速度与时间的函数关系、路程与时间的函数关系
最新研究表明,此种列车的稳定动行速度可达180米/秒,为了检测稳定运行时各项指标,在列车达到这一速度后至少要运行100秒,才能收集全相关数据.若在加速过程中路程、速度随时间的变化关系仍然满足(1)中的函数关系式,并且制作减速所需路程与启动加速的路程相同.根据以上要求,至少还要再建多长轨道就能满足试验检测要求?
若减速过程与加速过程完全相反.根据对问题(2)的研究,直接写出列车在试验检测过程中从启动到停车这段时间内,列车离开起点的距离(米)与时间(秒)的函数关系式(不需要写出过程)

  • 题型:未知
  • 难度:未知

如图,抛物线yax2ca>0)经过梯形ABCD的四个顶点,梯形的底ADx轴上,其中A(-2,0),B(-1, -3).
(1)求抛物线的解析式;
(2)点My轴上任意一点,当点MAB两点的距离之和为最小时,求此时点M的坐标;
(3)在第(2)问的结论下,抛物线上的点P使SPAD=4SABM成立,求点P的坐标.

  • 题型:未知
  • 难度:未知

是关于的一元二次方程的两个根,则方程的两个根和系数有如下关系:. 我们把它们称为根与系数关系定理. 如果设二次函数的图象与x轴的两个交点为.利用根与系数关系定理我们又可以得到A、B两个交点间的距离为:

请你参考以上定理和结论,解答下列问题:
设二次函数的图象与x轴的两个交点为,抛物线的顶点为,显然为等腰三角形.
(1)当为等腰直角三角形时,求
(2)当为等边三角形时,求

  • 题型:未知
  • 难度:未知

某市政府大力扶持大学生创业.李明在政府的扶持下投资销售一种进价为每件20元的护眼台灯.销售过程中发现,每月销售量y(件)与销售单价x(元)之间的关系可近似的看作一次函数:
(1)设李明每月获得利润为w(元),当销售单价定为多少元时,每月可获得最大利润?
(2)如果李明想要每月获得2000元的利润,那么销售单价应定为多少元?
(3)根据物价部门规定,这种护眼台灯的销售单价不得高于32元,如果李明想要每月获得的利润不低于2000元,那么他每月的成本最少需要多少元?(成本=进价×销售量)

  • 题型:未知
  • 难度:未知

如图,已知直线交坐标轴于两点,以线段为边向上作正方形,过点的抛物线与直线另一个交点为
请直接写出点的坐标
求抛物线的解析式
若正方形以每秒个单位长度的速度沿射线下滑,直至顶点落在轴上时停止.设正方形落在轴下方部分的面积为,求关于滑行时间的函数关系式,并写出相应自变量的取值范围;

在(3)的条件下,抛物线与正方形一起平移,当D落在x轴上时,抛物线与正方形同时停止,求抛物线上两点间的抛物线弧所扫过的面积.

  • 题型:未知
  • 难度:未知

如图,Rt△ABO的两直角边OA、OB分别在x轴的负半轴和y轴的正半轴上,O为坐标原点,A、B两点的坐标分别为(-3,0)、(0,4),抛物线经过B点,且顶点在直线上.

求抛物线对应的函数关系式;
若△DCE是由△ABO沿x轴向右平移得到的,当四边形ABCD是菱形时,试判断点C和点D是否在该抛物线上,并说明理由
在(2)的条件下,连结BD,已知在对称轴上存在一点P,使得△PBD的周长最小.请求出点P的坐标.
在(2)、(3)的条件下,若点M是线段OB上的一个动点(与点O、B不重合),过点M作MN∥BD交x轴于点N,连结PM、PN,设OM的长为t,△PMN的面积为S,求S与t的函数关系式,并写出自变量t的取值范围.S是否存在最大值?若存在,求出最大值并求此时M点的坐标;若不存在,请说明理由.

  • 题型:未知
  • 难度:未知

如图1所示,一张三角形纸片ABC,∠ACB=90°,AC=8,BC=6.沿斜边AB的中线CD把这张纸片剪成△AC1D1和△BC2D2两个三角形(如图2所示).将纸片△AC1D1沿直线D2B(AB)方向平移(点A,D1,D2,B始终在同一直线上),当点D1与点B重合时,停止平移.在平移的过程中,C1D1与BC2交于点E,AC1与C2D2、BC2分别交于点F、P.
当△AC1D1平移到如图3所示位置时,猜想D1E与D2F的数量关系,并说明理由
设平移距离D2D1为x,△AC1D1和△BC2D2重复部分面积为y,请写出y与x的函数关系式,以及自变量的取值范围;
对于(2)中的结论是否存在这样的x,使得重复部分面积等于原△ABC纸片面积的?若存在,请求出x的值;若不存在,请说明理由.

图1                  图2                       图3

  • 题型:未知
  • 难度:未知

如图,已知二次函数的图像经过点A和点B.
求该二次函数的表达式
写出该抛物线的对称轴及顶点坐标;
点P(m,m)与点Q均在该函数图像上(其中m>0),且这两点关于抛物线的对称轴对称,求P、Q两点的坐标及点Q 到x轴的距离. 

  • 题型:未知
  • 难度:未知

初中数学二次函数在给定区间上的最值解答题