如图①、②,在平面直角坐标系中,点A的坐标为(4,0),以点A为圆心,4为半径的圆与轴于O,B两点,OC为弦,∠AOC=60°,P是轴上的一动点,连结CP.
(1)求的度数;
(2)如图①,当与⊙A相切时,求的长;
(3)如图②,当点在直径上时,的延长线与⊙A相交于点,问为何值时,是等腰三角形?
(1)引入:如图1,直线AB为⊙O的弦,OC⊥OA,交AB于点P,且PC=BC,直线BC是否与⊙O相切,为什么?
(2)引申:记(1)中⊙O的切线为直线,在(1)的条件下,如图2,将切线向下平移,设平移后的直线与OB的延长线相交于点,与AB的延长线相交于点E,与OP的延长线相交于点.
找出图2中与相等的线段,并说明理由;
如果=9cm,=12cm,⊙O的半径为6cm,试求线段的长.
如图,⊙O的半径OD⊥弦AB于点C,连结AO并延长交⊙O于点E,连结EC.已知AB=8,CD=2.
(1)求⊙O的半径;
(2)求sin∠BCE的值.
如图,以矩形ABCD的对角线AC的中点O为圆心、OA长为半径作⊙O,⊙O经过B、D两点,过点B作BK⊥AC,垂足为K,过点D作DH∥KB,DH分别与AC、AB、⊙O及CB的延长线相交于点E、F、G、H。
(1)求证:AE=CK
(2)若AB=a,AD=a(a为常数),求BK的长(用含a的代数式表示)。
(3)若F是EG的中点,且DE=6,求⊙O的半径和GH的长。
.如图,BE是⊙O的直径,点A在EB的延长线上,弦PD⊥BE,垂足为C,连接OD,∠AOD=∠APC.
(1)求证:AP是⊙O的切线.
(2)若⊙O的半径是4,AP=4,求图中阴影部分的面积.
如图,在平面直角坐标系中,一段圆弧经过格点A、B、C.
(1)请写出该圆弧所在圆的圆心O的坐标 ;
(2)⊙O的半径为 (结果保留根号);
(3)求的长(结果保留π).
如图,已知AB是⊙O的直径,P为⊙O外一点,且OP∥BC,∠P=∠BAC.
(1)求证:PA为⊙O的切线;
(2)若OB=5,OP=,求AC的长.
如图,在直角坐标系中,已知、、、,点P从C点出发,沿着折线C﹣D﹣A运动到达点A时停止,过C点作直线GC⊥PC,且与过O、P、C三点的⊙M交于点G,连接OP、PG、OD.
(1)直接写出∠DCO的度数;
(2)当点P在线段CD上运动时,求△OPG的最小面积;
(3)设圆心M的纵坐标为n,试探索:在点P运动的整个过程中,n的取值范围.
如图所示,已知圆锥底面半径r=10cm,母线长为40cm.
(1)求它的侧面展开图的圆心角;
(2)若一甲虫从A点出发沿着圆锥侧面行到母线SA的中点B,求它所走的最短路线。
如图,在平面直角坐标系中,⊙A与x轴相交于C(﹣2,0),D(﹣8,0)两点,与y轴相切于点B(0,4).
(1)求经过B,C,D三点的抛物线的函数表达式;
(2)设抛物线的顶点为E,证明:直线CE与⊙A相切;
(3)在x轴下方的抛物线上,是否存在一点F,使△BDF面积最大,最大值是多少?并求出点F的坐标.
如图,矩形OACB,A(0,3)、B(6,0),点E在线段OB上,∠AEO=30°,点从点Q(-4,0)出发,沿x轴向右以每秒1个单位长度的速度运动,运动时间为t秒.
(1)求点E的坐标;
(2)当∠PAE=15°时,求t的值;
(3)以点P为圆心,PA为半径的随点P的运动而变化,当与四边形AEBC的边(或边所在的直线)相切时,求t的值.
如图,半圆O的直径DE=12cm,Rt△ABC中,∠ACB=90°,∠ABC=30°,BC=12cm.半圆O以2cm/s的速度从左向右运动,在运动过程中,直径DE始终在直线BC上.设运动时间为t(s),当t=0(s)时,半圆O在△ABC的左侧,OC=8cm.
(1)外
当t=8(s)时,试判断点C与半圆O所在的圆的位置关系.
外
(2)当t为何值时,△ABC的一边所在直线与半圆O所在的圆相切.
(3)在(2)的条件下,如果半圆O与△ABC三边围成的区域有重叠部分,求重叠部分的面积.
如图,⊙O的半径为1,直线CD经过圆心O,交⊙O于C、D两点,直径AB⊥CD,点M是直线CD上异于点C、O、D的一个动点,AM所在的直线交于⊙O于点N,点P是直线CD上另一点,且PM=PN.
(1)当点M在⊙O内部,如图一,试判断PN与⊙O的关系,并写出证明过程;
(2)当点M在⊙O外部,如图二,其它条件不变时,(1)的结论是否成立?请说明理由;
(3)当点M在⊙O外部,如图三,∠AMO=30°,求图中阴影部分的面积.
如图,已知等边△ABC,AB=16,以AB为直径的半圆与BC边交于点D,过点D作DF⊥AC,垂足为F,过点F作FG⊥AB,垂足为G,连结GD.
(1)求证:DF是⊙O的切线;
(2)求FG的长;
(3)求tan∠FGD的值.
试题篮
()