如图,把长为40cm,宽30cm的长方形硬纸板,剪掉2个小正方形和2个小长方形(阴影部分即剪掉的部分),将剩余的部分拆成一个有盖的长方体盒子,设剪掉的小正方形边长为xcm(纸板的厚度忽略不计)
(1)长方体盒子的长、宽、高分别为多少?(单位:cm)
(2)若折成的一个长方体盒于表面积是950cm2,求此时长方体盒子的体积.
(1)左下图是有几个大小完全一样的小正方体搭成的几何体的俯视图,小正方形中的数字表示在该位置小正方体的个数,请你画出该几何体的主视图和左视图.
|
|
将一个长方形绕它的一边所在的直线旋转一周,得到的几何体是圆柱,现在有一个长为4cm、宽为3cm的长方形,分别绕它的长、宽所在直线旋转一周,得到不同的圆柱体,它们的体积分别是多大?
棱长为1cm的小正方形组成如图所示的零件模型,要将模型表面油漆成紫色(黏合的部分及地面接触部分不油漆)。
求:模型的涂漆面积;
若模型表面涂漆加工费为5元每平方厘米,
那么这个模型的总加工费是多少元?
(8分)如图,长方体的长为15,宽为10,高为20,点B离点C的距离是5,一只蚂蚁如果要沿着长方体的表面从点A爬到点B,需要爬行的最短距离是多少?
(本题6分)已知一个几何体的三视图和有关尺寸如图所示,其中主视图为直角三角形,
∠ACB=Rt∠,说出这个几何体的名称,并求出这个几何体的表面积。
已知直四棱柱的底面是边长为a的正方形, 高为, 体积为V, 表面积等于S. 当a =" 2," h =时,分别求V和S.
长12米,宽5米,高3米的教室,抹上石灰,扣除门窗黑板面积9.8平方米, 抹石灰的面积有多少平方米?
回答下列问题:
⑴如图所示的甲、乙两个平面图形能折什么几何体?
(2)由多个平面围成的几何体叫做多面体.若一个多面体的面数为,顶点个数为,棱数为,分别计算第(1)题中两个多面体的的值?你发现什么规律?
(3)应用上述规律解决问题:一个多面体的顶点数比面数大8,且有50条棱,求这个几何体的面数.
(10分)某工厂用如图甲所示的长方形和正方形纸板,做成如图乙所示的竖式与横式两种长方体形状的无盖纸盒.
(1)现有正方形纸板162张,长方形纸板340张.若要做两种纸盒共l00个,设做竖式纸盒x个.
① 根据题意,完成以下表格:
纸盒 纸板 |
竖式纸盒(个) |
横式纸盒(个) |
x |
100-x |
|
正方形纸板(张) |
▲ |
2(100-x) |
长方形纸板(张) |
4x |
▲ |
②按两种纸盒的生产个数来分,有哪几种生产方案?
(2)若有正方形纸162张,长方形纸板a张,做成上述两种纸盒,纸板恰好用完.已知290<a<306.求 a的值.
学校在艺术周上,要求学生制作一个精美的轴对称图形,请你用所给出的几何图形:○○△△ (两个圆,两个等边三角形,两条线段)为构件,构思一个独特,有意义的轴对称图形,并写上一句简要的解说词。
七巧板是我们祖先的一项卓越创造,用它可以拼出多种图形,请你用七巧板中标号为①②③的三块板(如图1)经过平移、旋转拼成图形.
(1)拼成矩形,在图2中画出示意图.
(2)拼成等腰直角三角形,在图3中画出示意图.
注意:相邻两块板之间无空隙,无重叠;示意图的顶点画在小方格顶点上.
如图,长方体的底面边长分别为1cm和3cm,高为6cm,如果用一根细线从点A开始经过4个侧面缠绕一圈到达B(B为棱的中点),那么所用细线最短需要多长?如果从点A开始经过4个侧面缠绕n圈到达点B,那么所用细线最短需要多长?
试题篮
()