优题课 - 聚名师,上好课(www.youtike.com)
  首页 / 试题库 / 初中数学试题 / 解答题
初中数学

为了防控新冠疫情,某地区积极推广疫苗接种工作,卫生防疫部门对该地区八周以来的相关数据进行收集整理,绘制得到图表:

该地区每周接种疫苗人数统计表

周次

第1周

第2周

第3周

第4周

第5周

第6周

第7周

第8周

接种人数(万人)

7

10

12

18

25

29

37

42

根据统计表中的数据,建立以周次为横坐标,接种人数为纵坐标的平面直角坐标系,并根据以上统计表中的数据描出对应的点,发现从第3周开始这些点大致分布在一条直线附近,现过其中两点 ( 3 , 12 ) ( 8 , 42 ) 作一条直线(如图所示,该直线的函数表达式为 y = 6 x - 6 ) ,那么这条直线可近似反映该地区接种人数的变化趋势.

请根据以上信息,解答下列问题:

(1)这八周中每周接种人数的平均数为   万人;该地区的总人口约为   万人;

(2)若从第9周开始,每周的接种人数仍符合上述变化趋势.

①估计第9周的接种人数约为   万人;

②专家表示:疫苗接种率至少达 60 % ,才能实现全民免疫.那么,从推广疫苗接种工作开始,最早到第几周,该地区可达到实现全民免疫的标准?

(3)实际上,受疫苗供应等客观因素,从第9周开始接种人数将会逐周减少 a ( a > 0 ) 万人,为了尽快提高接种率,一旦周接种人数低于20万人时,卫生防疫部门将会采取措施,使得之后每周的接种能力一直维持在20万人.如果 a = 1 . 8 ,那么该地区的建议接种人群最早将于第几周全部完成接种?

来源:2021年江苏省盐城市中考数学试卷
  • 题型:未知
  • 难度:未知

某种落地灯如图1所示, AB 为立杆,其高为 84 cm BC 为支杆,它可绕点 B 旋转,其中 BC 长为 54 cm DE 为悬杆,滑动悬杆可调节 CD 的长度.支杆 BC 与悬杆 DE 之间的夹角 BCD 60 °

(1)如图2,当支杆 BC 与地面垂直,且 CD 的长为 50 cm 时,求灯泡悬挂点 D 距离地面的高度;

(2)在图2所示的状态下,将支杆 BC 绕点 B 顺时针旋转 20 ° ,同时调节 CD 的长(如图 3 ) ,此时测得灯泡悬挂点 D 到地面的距离为 90 cm ,求 CD 的长.(结果精确到 1 cm ,参考数据: sin 20 ° 0 . 34 cos 20 ° 0 . 94 tan 20 ° 0 . 36 sin 40 ° 0 . 64 cos 40 ° 0 . 77 tan 40 ° 0 . 84 )

来源:2021年江苏省盐城市中考数学试卷
  • 题型:未知
  • 难度:未知

在平面直角坐标系中, O 为坐标原点,直线 y = - x + 3 x 轴交于点 B ,与 y 轴交于点 C ,二次函数 y = a x 2 + 2 x + c 的图象过 B C 两点,且与 x 轴交于另一点 A ,点 M 为线段 OB 上的一个动点,过点 M 作直线 l 平行于 y 轴交 BC 于点 F ,交二次函数 y = a x 2 + 2 x + c 的图象于点 E

(1)求二次函数的表达式;

(2)当以 C E F 为顶点的三角形与 ΔABC 相似时,求线段 EF 的长度;

(3)已知点 N y 轴上的点,若点 N F 关于直线 EC 对称,求点 N 的坐标.

来源:2021年江苏省无锡市中考数学试卷
  • 题型:未知
  • 难度:未知

已知正方形 ABCD 与正方形 AEFG ,正方形 AEFG 绕点 A 旋转一周.

(1)如图①,连接 BG CF ,求 CF BG 的值;

(2)当正方形 AEFG 旋转至图②位置时,连接 CF BE ,分别取 CF BE 的中点 M N ,连接 MN 、试探究: MN BE 的关系,并说明理由;

(3)连接 BE BF ,分别取 BE BF 的中点 N Q ,连接 QN AE = 6 ,请直接写出线段 QN 扫过的面积.

来源:2021年江苏省宿迁市中考数学试卷
  • 题型:未知
  • 难度:未知

如图①,甲、乙都是高为6米的长方体容器,容器甲的底面 ABCD 是正方形,容器乙的底面 EFGH 是矩形.如图②,已知正方形 ABCD 与矩形 EFGH 满足如下条件:正方形 ABCD 外切于一个半径为5米的圆 O ,矩形 EFGH 内接于这个圆 O EF = 2 EH

(1)求容器甲、乙的容积分别为多少立方米?

(2)现在我们分别向容器甲、乙同时持续注水(注水前两个容器是空的),一开始注水流量均为25立方米 / 小时,4小时后,把容器甲的注水流量增加 a 立方米 / 小时,同时保持容器乙的注水流量不变,继续注水2小时后,把容器甲的注水流量再一次增加50立方米 / 小时,同时容器乙的注水流量仍旧保持不变,直到两个容器的水位高度相同,停止注水.在整个注水过程中,当注水时间为 t 时,我们把容器甲的水位高度记为 h ,容器乙的水位高度记为 h ,设 h - h = h ,已知 h (米 ) 关于注水时间 t (小时)的函数图象如图③所示,其中 MN 平行于横轴,根据图中所给信息,解决下列问题:

①求 a 的值;

②求图③中线段 PN 所在直线的解析式.

来源:2021年江苏省苏州市中考数学试卷
  • 题型:未知
  • 难度:未知

如图,二次函数 y = x 2 - ( m + 1 ) x + m ( m 是实数,且 - 1 < m < 0 ) 的图象与 x 轴交于 A B 两点(点 A 在点 B 的左侧),其对称轴与 x 轴交于点 C .已知点 D 位于第一象限,且在对称轴上, OD BD ,点 E x 轴的正半轴上, OC = EC ,连接 ED 并延长交 y 轴于点 F ,连接 AF

(1)求 A B C 三点的坐标(用数字或含 m 的式子表示);

(2)已知点 Q 在抛物线的对称轴上,当 ΔAFQ 的周长的最小值等于 12 5 时,求 m 的值.

来源:2021年江苏省苏州市中考数学试卷
  • 题型:未知
  • 难度:未知

已知二次函数 y = a x 2 + bx + c 的图象经过 ( - 2 , 1 ) ( 2 , - 3 ) 两点.

(1)求 b 的值;

(2)当 c > - 1 时,该函数的图象的顶点的纵坐标的最小值是  1 

(3)设 ( m , 0 ) 是该函数的图象与 x 轴的一个公共点.当 - 1 < m < 3 时,结合函数的图象,直接写出 a 的取值范围.

来源:2021年江苏省南京市中考数学试卷
  • 题型:未知
  • 难度:未知

如图,抛物线 y = m x 2 + ( m 2 + 3 ) x - ( 6 m + 9 ) x 轴交于点 A B ,与 y 轴交于点 C ,已知 B ( 3 , 0 )

(1)求 m 的值和直线 BC 对应的函数表达式;

(2) P 为抛物线上一点,若 S ΔPBC = S ΔABC ,请直接写出点 P 的坐标;

(3) Q 为抛物线上一点,若 ACQ = 45 ° ,求点 Q 的坐标.

来源:2021年江苏省连云港市中考数学试卷
  • 题型:未知
  • 难度:未知

在平面直角坐标系 xOy 中,对于 A A ' 两点,若在 y 轴上存在点 T ,使得 ATA ' = 90 ° ,且 TA = TA ' ,则称 A A ' 两点互相关联,把其中一个点叫做另一个点的关联点.已知点 M ( - 2 , 0 ) N ( - 1 , 0 ) ,点 Q ( m , n ) 在一次函数 y = - 2 x + 1 的图象上.

(1)①如图,在点 B ( 2 , 0 ) C ( 0 , - 1 ) D ( - 2 , - 2 ) 中,点 M 的关联点是   B  (填" B "、" C "或" D " )

②若在线段 MN 上存在点 P ( 1 , 1 ) 的关联点 P ' ,则点 P ' 的坐标是   

(2)若在线段 MN 上存在点 Q 的关联点 Q ' ,求实数 m 的取值范围;

(3)分别以点 E ( 4 , 2 ) Q 为圆心,1为半径作 E Q .若对 E 上的任意一点 G ,在 Q 上总存在点 G ' ,使得 G G ' 两点互相关联,请写出点 Q 的坐标.

来源:2021年江苏省常州市中考数学试卷
  • 题型:未知
  • 难度:未知

【阅读】

通过构造恰当的图形,可以对线段长度、图形面积大小等进行比较,直观地得到一些不等关系或最值,这是"数形结合"思想的典型应用.

【理解】

(1)如图1, AC BC CD AB ,垂足分别为 C D E AB 的中点,连接 CE .已知 AD = a BD = b ( 0 < a < b )

①分别求线段 CE CD 的长(用含 a b 的代数式表示);

②比较大小: CE     CD (填" < "、" = "或" > " ) ,并用含 a b 的代数式表示该大小关系.

【应用】

(2)如图2,在平面直角坐标系 xOy 中,点 M N 在反比例函数 y = 1 x ( x > 0 ) 的图象上,横坐标分别为 m n .设 p = m + n q = 1 m + 1 n ,记 l = 1 4 pq

①当 m = 1 n = 2 时, l =   ;当 m = 3 n = 3 时, l =   

②通过归纳猜想,可得 l 的最小值是   .请根据图2构造恰当的图形,并说明你的猜想成立.

来源:2021年江苏省常州市中考数学试卷
  • 题型:未知
  • 难度:未知

如图,在矩形 ABCD 中, AB = 3 cm AD = 3 cm .动点 P 从点 A 出发沿折线 AB - BC 向终点 C 运动,在边 AB 上以 1 cm / s 的速度运动;在边 BC 上以 3 cm / s 的速度运动,过点 P 作线段 PQ 与射线 DC 相交于点 Q ,且 PQD = 60 ° ,连接 PD BD .设点 P 的运动时间为 x ( s ) ΔDPQ ΔDBC 重合部分图形的面积为 y ( c m 2 )

(1)当点 P 与点 A 重合时,直接写出 DQ 的长;

(2)当点 P 在边 BC 上运动时,直接写出 BP 的长(用含 x 的代数式表示);

(3)求 y 关于 x 的函数解析式,并写出自变量 x 的取值范围.

来源:2021年吉林省中考数学试卷
  • 题型:未知
  • 难度:未知

如图①,在 Rt Δ ABC 中, ACB = 90 ° A = 60 ° CD 是斜边 AB 上的中线,点 E 为射线 BC 上一点,将 ΔBDE 沿 DE 折叠,点 B 的对应点为点 F

(1)若 AB = a .直接写出 CD 的长(用含 a 的代数式表示);

(2)若 DF BC ,垂足为 G ,点 F 与点 D 在直线 CE 的异侧,连接 CF ,如②,判断四边形 ADFC 的形状,并说明理由;

(3)若 DF AB ,直接写出 BDE 的度数.

来源:2021年吉林省中考数学试卷
  • 题型:未知
  • 难度:未知

如图,在 ΔABC 中, C = 90 ° AB = 5 BC = 3 ,点 D 为边 AC 的中点.动点 P 从点 A 出发,沿折线 AB - BC 以每秒1个单位长度的速度向点 C 运动,当点 P 不与点 A C 重合时,连结 PD .作点 A 关于直线 PD 的对称点 A ' ,连结 A ' D A ' A .设点 P 的运动时间为 t 秒.

(1)线段 AD 的长为   

(2)用含 t 的代数式表示线段 BP 的长;

(3)当点 A ' ΔABC 内部时,求 t 的取值范围;

(4)当 AA ' D B 相等时,直接写出 t 的值.

来源:2021年吉林省长春市中考数学试卷
  • 题型:未知
  • 难度:未知

实践与探究

操作一:如图①,已知正方形纸片 ABCD ,将正方形纸片沿过点 A 的直线折叠,使点 B 落在正方形 ABCD 的内部,点 B 的对应点为点 M ,折痕为 AE ,再将纸片沿过点 A 的直线折叠,使 AD AM 重合,折痕为 AF ,则 EAF =   度.

操作二:如图②,将正方形纸片沿 EF 继续折叠,点 C 的对应点为点 N .我们发现,当点 E 的位置不同时,点 N 的位置也不同.当点 E BC 边的某一位置时,点 N 恰好落在折痕 AE 上,则 AEF =   度.

在图②中,运用以上操作所得结论,解答下列问题:

(1)设 AM NF 的交点为点 P .求证: ΔANP ΔFNE

(2)若 AB = 3 ,则线段 AP 的长为   

来源:2021年吉林省长春市中考数学试卷
  • 题型:未知
  • 难度:未知

如图所示, AB O 的直径,点 C D O 上不同的两点,直线 BD 交线段 OC 于点 E 、交过点 C 的直线 CF 于点 F ,若 OC = 3 CE ,且 9 ( E F 2 - C F 2 ) = O C 2

(1)求证:直线 CF O 的切线;

(2)连接 OD AD AC DC ,若 COD = 2 BOC

①求证: ΔACD ΔOBE

②过点 E EG / / AB ,交线段 AC 于点 G ,点 M 为线段 AC 的中点,若 AD = 4 ,求线段 MG 的长度.

来源:2021年湖南省株洲市中考数学试卷
  • 题型:未知
  • 难度:未知

初中数学解答题