如图,抛物线 与 轴交于两点 和 ,与 轴交于点 ,动点 沿 的边 以每秒2个单位长度的速度由起点 向终点 运动,过点 作 轴的垂线,交 的另一边于点 ,将 沿 折叠,使点 落在点 处,设点 的运动时间为 秒.
(1)求抛物线的解析式和对称轴;
(2)是否存在某一时刻 ,使得 为直角三角形?若存在,求出 的值;若不存在,请说明理由;
(3)设四边形 的面积为 ,求 关于 的函数表达式.
如图1,在平面直角坐标系中,已知抛物线 与 轴交于 , 两点,与 轴交于点 .
(1)求抛物线的函数表达式;
(2)若点 是 轴上的一点,且以 , , 为顶点的三角形与 相似,求点 的坐标;
(3)如图2, 轴与抛物线相交于点 ,点 是直线 下方抛物线上的动点,过点 且与 轴平行的直线与 , 分别相交于点 , ,试探究当点 运动到何处时,四边形 的面积最大,求点 的坐标及最大面积;
(4)若点 为抛物线的顶点,点 是该抛物线上的一点,在 轴, 轴上分别找点 , ,使四边形 的周长最小,求出点 , 的坐标.
如图,正方形 的边长为1,点 为边 上一动点,连接 并将其绕点 顺时针旋转 得到 ,连接 ,以 、 为邻边作矩形 , 与 、 分别交于点 、 , 交 延长线于点 .
(1)证明:点 、 、 在同一条直线上;
(2)随着点 的移动,线段 是否有最小值?若有,求出最小值;若没有,请说明理由;
(3)连接 、 ,当 时,求 的长.
如图1, 是边长为 的等边三角形,边 在射线 上,且 ,点 从 点出发,沿 的方向以 的速度运动,当 不与点 重合时,将 绕点 逆时针方向旋转 得到 ,连接 .
(1)求证: 是等边三角形;
(2)如图2,当 时, 的周长是否存在最小值?若存在,求出 的最小周长;若不存在,请说明理由;
(3)如图3,当点 在射线 上运动时,是否存在以 、 、 为顶点的三角形是直角三角形?若存在,求出此时 的值;若不存在,请说明理由.
如图,直角 中, , 在 上,连接 ,作 分别交 于 , 于 .
(1)如图1,若 ,求证: ;
(2)如图2,若 ,取 的中点 ,连接 交 于 ,求证:① ;② .
抛物线 与 轴相交于 、 两点(其中 为坐标原点),过点 作直线 轴于点 ,交抛物线于点 ,点 关于抛物线对称轴的对称点为 (其中 、 不重合),连接 交 轴于点 ,连接 和 .
(1) 时,求抛物线的解析式和 的长;
(2)如图 时,若 ,求 的值;
(3)是否存在实数 ,使 ?若存在,求出 的值,如不存在,请说明理由.
如图, 在平面直角坐标系中, 把矩形 沿对角线 所在直线折叠, 点 落在点 处, 与 轴相交于点 ,矩形 的边 , 的长是关于 的一元二次方程 的两个根, 且 .
(1) 求线段 , 的长;
(2) 求证: ,并求出线段 的长;
(3) 直接写出点 的坐标;
(4) 若 是直线 上一个动点, 在坐标平面内是否存在点 ,使以点 , , , 为顶点的四边形是菱形?若存在, 请直接写出 点的坐标;若不存在, 请说明理由 .
在平面直角坐标系中,二次函数 的图象经过点 和点 .点 是直线 与二次函数图象在第一象限内的交点.
(1)求二次函数的解析式及点 的坐标.
(2)如图①,若点 是二次函数图象上的点,且在直线 的上方,连接 , , .求四边形 面积的最大值及此时点 的坐标.
(3)如图②,经过 、 、 三点的圆交 轴于点 ,求点 的坐标.
如图,已知抛物线经过点 , , 三点,点 与点 关于 轴对称,点 是 轴上的一个动点,设点 的坐标为 ,过点 作 轴的垂线 交抛物线于点 ,交直线 于点 .
(1)求该抛物线所表示的二次函数的表达式;
(2)已知点 ,当点 在 轴上运动时,试求 为何值时,四边形 是平行四边形?
(3)点 在线段 运动过程中,是否存在点 ,使得以点 、 、 为顶点的三角形与 相似?若存在,求出点 的坐标;若不存在,请说明理由.
如图1,已知矩形 , , ,动点 从点 出发,以 的速度向点 运动,直到点 为止;动点 同时从点 出发,以 的速度向点 运动,与点 同时结束运动.
(1)点 到达终点 的运动时间是 ,此时点 的运动距离是 ;
(2)当运动时间为 时, 、 两点的距离为 ;
(3)请你计算出发多久时,点 和点 之间的距离是 ;
(4)如图2,以点 为坐标原点, 所在直线为 轴, 所在直线为 轴, 长为单位长度建立平面直角坐标系,连接 ,与 相交于点 ,若双曲线 过点 ,问 的值是否会变化?若会变化,说明理由;若不会变化,请求出 的值.
如图,在平面直角坐标系 中,点 是反比例函数 图象上一点,点 的横坐标为 ,点 是 轴负半轴上的一点,连接 , ,交 轴于点 ,延长 到点 ,使得 ,过点 作 平行于 轴,过点 作 轴平行线交 于点 .
(1)当 时,求点 的坐标;
(2) ,设点 的坐标为 ,求 关于 的函数关系式和自变量的取值范围;
(3)连接 ,过点 作 的平行线,与(2)中的函数图象交于点 ,当 为何值时,以 、 、 、 为顶点的四边形是平行四边形?
如图,以 为顶点的抛物线 交 轴于 、 两点,交 轴于点 ,直线 的表达式为 .
(1)求抛物线的表达式;
(2)在直线 上有一点 ,使 的值最小,求点 的坐标;
(3)在 轴上是否存在一点 ,使得以 、 、 为顶点的三角形与 相似?若存在,请求出点 的坐标;若不存在,请说明理由.
如图,已知抛物线 的对称轴为直线 ,且抛物线与 轴交于 、 两点,与 轴交于 点,其中 , .
(1)若直线 经过 、 两点,求直线 和抛物线的解析式;
(2)在抛物线的对称轴 上找一点 ,使点 到点 的距离与到点 的距离之和最小,求出点 的坐标;
(3)设点 为抛物线的对称轴 上的一个动点,求使 为直角三角形的点 的坐标.
如图,抛物线 , 、 为常数)与 轴交于 、 两点,与 轴交于 点,直线 的函数关系式为 .
(1)求该抛物线的函数关系式与 点坐标;
(2)已知点 是线段 上的一个动点,过点 作 轴的垂线 分别与直线 和抛物线交于 、 两点,当 为何值时, 恰好是以 为底边的等腰三角形?
(3)在(2)问条件下,当 恰好是以 为底边的等腰三角形时,动点 相应位置记为点 ,将 绕原点 顺时针旋转得到 (旋转角在 到 之间);
.探究:线段 上是否存在定点 不与 、 重合),无论 如何旋转, 始终保持不变.若存在,试求出 点坐标;若不存在,请说明理由;
.试求出此旋转过程中, 的最小值.
试题篮
()