某单位为了制定节能减排目标,先调查了用电量(单位:度)与气温(单位:)之间的关系,随机统计了某天的用电量与当天气温,并制作了对照表:
由表中数据,得线性回归直线方程,当气温不低于时,预测用电量最多为 度.
已知具有线性相关的两个变量之间的一组数据如下:
0 |
1 |
2 |
3 |
4 |
|
2.2 |
4.3 |
4.5 |
4.8 |
6.7 |
且回归方程是的预测值为( )
A.8.1 B.8.2 C.8.3 D.8.4
调查了某地若干户家庭的年收入x(单位:万元)和年饮食支出y(单位:万元),调查显示年收入x与年饮食支出y具有线性相关关系,并由调查数据得到y对x的回归直线方程:
.由回归直线方程可知,
家庭年收入每增加1万元,年饮食支出平均增加____________万元;
通过随机询问110名性别不同的大学生是否爱好某项运动,得到如下的
列联表:
|
男 |
女 |
总计 |
爱好 |
40 |
20 |
60 |
不爱好 |
20 |
30 |
50 |
总计 |
60 |
50 |
110 |
由算得,
附表:
0.050 |
0.010 |
0.001 |
|
k |
3.841 |
6.635 |
10.828 |
参照附表,得到的正确结论是( )
A、有99%以上的把握认为“爱好该项运动与性别有关”
B、有99%以上的把握认为“爱好该项运动与性别无关”
C、在犯错误的概率不超过0.1%的前提下,认为 “爱好该项运动与性别有关”
D、在犯错误的概率不超过0.1%的前提下,认为 “爱好该项运动与性别无关”
通过随机询问110名性别不同的大学生是否爱好某项运动,得到如下的列
由算得,
.
参照附表,得到的正确结论是 ( )
A.再犯错误的概率不超过0.1%的前提下,认为“爱好该项运动与性别有关” |
B.再犯错误的概率不超过0.1%的前提下,认为“爱好该项运动与性别无关” |
C.有99%以上的把握认为“爱好该项运动与性别有关” |
D.有99%以上的把握认为“爱好该项运动与性别无关” |
对于两个变量进行回归分析时,分别选择了4个模型,它们的相关指数如下,其中拟合效果最好的模型是( )
A.模型1,相关指数为0.89 | B.模型2,相关指数为0.98 |
C.模型3,相关指数为0.09 | D.模型4,相关指数为0.50 |
已知某校5个学生的数学和物理成绩如下表
(1)假设在对这名学生成绩进行统计时,把这名学生的物理成绩搞乱了,数学成绩没出现问题,问:恰有名学生的物理成绩是自己的实际分数的概率是多少?
(2)通过大量事实证明发现,一个学生的数学成绩和物理成绩具有很强的线性相关关系的,在上述表格是正确的前提下,用表示数学成绩,用表示物理成绩,求与的回归方程;
(3)利用残差分析回归方程的拟合效果,若残差和在范围内,则称回归方程为“优拟方程”,问:该回归方程是否为“优拟方程”.
参考数据和公式:,其中,;
,残差和公式为:
某公司的广告费支出x与销售额y(单位:万元)之间有下列对应数据:由资料显示对呈线性相关关系。
根据上表提供的数据得到回归方程中的,预测销售额为115万元时约需
万元广告费.
某校的研究性学习小组为了研究中学生的身高与性别情况,在该校随机抽出80名17至18周岁的学生,其中身高的男生有30人,女生4人;身高<170的男生有10人。
(1)根据以上数据建立一个列联表:
(2)请问在犯错误的概率不超过0.001的前提下,该校17至18周岁的学生的身高与性别是否有关?
参考公式:
参考数据:
某班主任对全班50名学生进行了作业量多少的调查,喜欢玩电脑游戏的同学认为作业多的有18人,认为作业不多的有9人,不喜欢玩电脑游戏的同学认为作业多的有8人,认为作业不多的有15人.
(1)根据以上数据建立一个的列联表;
(2)认为喜欢玩电脑游戏与认为作业量的多少有关系的把握大约是多少?(参考数值: )
某城市理论预测2000年到2004年人口总数与年份的关系如下表所示
年份200x(年) |
0 |
1 |
2 |
3 |
4 |
人口数y(十万) |
5 |
7 |
8 |
11 |
19 |
(1)请画出上表数据的散点图;
(2)请根据上表提供的数据,求最小二乘法求出y关于x的线性回归方程y=bx+a;
(3) 据此估计2012年.该 城市人口总数.
(参考数值:0×5+1×7+2×8+3×11+4×19=132,,公式见卷首)
我校开展研究性学习活动,高二某同学获得一组实验数据如下表:
x |
1.99 |
3 |
4 |
5.1 |
6.12 |
y |
1.5 |
4.04 |
7.5 |
12 |
18.01 |
对于表中数据,现给出以下拟合曲线,其中拟合程度最好的是
A. B. C. D.
试题篮
()