优题课 - 聚名师,上好课(www.youtike.com)
  首页 / 试题库 / 高中数学试题 / 变量间的相关关系
高中数学

某医疗研究所为了检验新开发的流感疫苗对甲型H1N1流感的预防作用,把1000名注射了疫苗的人与另外1000名未注射疫苗的人的半年的感冒记录作比较,提出假设H0:“这种疫苗不能起到预防甲型H1N1流感的作用”,经计算得到,且,则下列说法正确的是(   )

A.这种疫苗能起到预防甲型H1N1流感的有效率为1%
B.若某人未使用该疫苗,则他在半年中有99%的可能性得甲型H1N1
C.有1%的把握认为“这种疫苗能起到预防甲型H1N1流感的作用”
D.有99%的把握认为“这种疫苗能起到预防甲型H1N1流感的作用.
  • 题型:未知
  • 难度:未知

(本小题满分12分)
在对人们的休闲方式的一次调查中,共调查了124人,其中女性70人,男性54人。女性中有43人主要的休闲方式是看电视,另外27人主要的休闲方式是运动;男性中有21人主要的休闲方式是看电视,另外33人主要的休闲方式是运动。
(1)根据以上数据建立一个2×2列联表;
(2)判断休闲方式与性别是否有关。
(参考公式:
参考数据:

  • 题型:未知
  • 难度:未知

为研究变量的线性相关性,甲、乙二人分别作了研究,利回线性回归方法
得到回归直线方程,两人计算知相同,也相同,下列正确的是(   )          

A.重合 B.一定平行
C. D.无法判断是否相交
  • 题型:未知
  • 难度:未知

(本小题满分12分)

对某电子元件进行寿命追踪调查,情况如下:

寿命/小时
100~200
200~300
300~400
400~500
500~600
个数
20
30
80
40
30

(1)完成频率分布表;

分组
频数
频率
100~200
 
 
200~300
 
 
300~400
 
 
400~500
 
 
500~600
 
 
合计
 
 

(2)画出频率分布直方图和频率分布折线图;
(3)估计电子元件寿命在100~400小时以内的频率;

来源:
  • 题型:未知
  • 难度:未知

假设关于某设备的使用年限(年)和所支出的维修费用(万元)有如下统计资料:

(年)
2
3
4
5
6
(万元)
2.2
3.8
5.5
6.5
7.0

若由资料知,呈线性相关关系,且有如下参考数据:
,则回归直线方程为

A. B.
C. D.
  • 题型:未知
  • 难度:未知

设三组实验数据(x1,y1),(x2,y2),(x3,y3)的回归直线方程是:=x+,使代数式[y1-(x1+)]2+[y2-(x2+)]2+[y3-(x3+)]2的值最小时,=-,=(,分别是这三组数据的横、纵坐标的平均数),
若有7组数据列表如下:

x
2
3
4
5
6
7
8
y
4
6
5
6.2
8
7.1
8.6

(1)求上表中前3组数据的回归直线方程.
(2)若|yi-(xi+)|≤0.2,即称(xi,yi)为(1)中回归直线的拟合“好点”,求后4组数据中拟合“好点”的概率.

  • 题型:未知
  • 难度:未知

为了解高二某班学生喜爱打篮球是否与性别有关,对本班50人进行了问卷调查得到了如下的列联表:

已知在全部50人中随机抽取1人抽到喜爱打篮球的学生的概率为.
(1)请将上面的列联表补充完整;
(2)是否有99.5%的把握认为喜爱打篮球与性别有关?说明你的理由;
下面的临界值表供参考:

(参考公式K2,其中n=a+b+c+d)

  • 题型:未知
  • 难度:未知

(满分12分)假设关于某设备的使用年限和所支出的维修费用(万元)有如下的统计资料:

使用年限





维修费用





 
若由资料知呈线性相关关系。
(1)请画出上表数据的散点图;
(2)请根据最小二乘法求出线性回归方程的回归系数,
(3)估计使用年限为年时,维修费用是多少?

  • 题型:未知
  • 难度:未知

由某种设备的使用年限(年)与所支出的维修费(万元)的数据资料,算得
(Ⅰ)求所支出的维修费对使用年限的线性回归方程
(Ⅱ)判断变量之间是正相关还是负相关;
(Ⅲ)估计使用年限为8年时,支出的维修费约是多少.
附:在线性回归方程中,,其中
样本平均值,线性回归方程也可写为

  • 题型:未知
  • 难度:未知

为了预防甲型H1N1流感,某学校对教室用药薰消毒法进行消毒,已知药物释放过程中,室内每立方米空气中的含药量y(毫克)与t时间(小时)成正比,药物释放完毕后,y与t之间的函数关系式为(a为常数)如下图所示,根据图中提供的信息,回答下列问题.

(1)从药物释放开始,求每立方米空气中的含药量y(毫克)与时间t(小时)之间的函数关系式;
(2)据测定,当空气中每立方米的含药量降低到0.25毫克以下时,学生方可进教室,那么从药物释放开始至少需要经过多少小时后,学生才可能回到教室.

  • 题型:未知
  • 难度:未知

在2010年3月15日那天,龙岩市物价部门对本市5家商场某商品的一天销售量及其价格进行调查,5家商场的售价元和销售量件之间的一组数据如右表所示,由散点图可知,销售量y与价格之间有较好的线性相关关系,若其线性回归直线方程是:
,(参考公式:回归方程;),则___________。

价格
9
9.5
10
10.5
11
销售量
11
10
8
6
5

 

  • 题型:未知
  • 难度:未知

下列四个命题正确的是                                            (   )
①线性相关系数r越大,两个变量的线性相关性越强;反之,线性相关性越小;
②残差平方和越小的模型,拟合的效果越好;
③用相关指数R2来刻画回归效果,R2越小,说明模型的拟合效果越好。
④随机误差e是衡量预报精确度的一个量,它满足Ee)=0

A.①③ B.②④ C.①④ D.②③
  • 题型:未知
  • 难度:未知

.以下是粤西地区某县搜集到的新房屋的销售价格房屋的面积的数据:

(1)画出数据散点图;
(2)由散点图判断新房屋销售价格y和房屋面积x是否具有线性相关关系?若有,求线性回归方程。(保留四位小数)
(3)根据房屋面积预报销售价格的回归方程,预报房屋面积为时的销售价格。
参考公式: ,
参考数据:

  • 题型:未知
  • 难度:未知

(本小题满分12分)某地区2007年至2013年农村居民家庭纯收入(单位:千元)的数据如下表:

年份
2007
2008
2009
2010
2011
2012
2013
年份代号 
1
2
3
4
5
6
7
人均纯收入
2.9
3.3
3.6
4.4
4.8
5.2
5.9

 
(Ⅰ)求关于的线性回归方程;(已知b=0.5)
(Ⅱ)利用(Ⅰ)中的回归方程,分析2007年至2013年该地区农村居民家庭人均纯收入的变化情况,并预测该地区2015年农村居民家庭人均纯收入.

  • 题型:未知
  • 难度:未知

某工厂为了对新研发的一种产品进行合理定价,将该产品按事先拟定的价格进行试销,得到如下数据:

单价x(元)
8
8.2
8.4
8.6
8.8
9
销量y(件)
90
84
83
80
75
68

 
(1)求回归直线方程=bx+a,其中b=-20,a=
(2)预计在今后的销售中,销量与单价仍然服从(1)中的关系,且该产品的成本是4元/件,为使工厂获得最大利润,该产品的单价应定为多少元?(利润=销售收入-成本)

  • 题型:未知
  • 难度:未知

高中数学变量间的相关关系试题