下面几个推理过程是演绎推理的是( )
A.某同学第一次数学考试65分,第二次考试68分,由此预测其第三次考试71分. |
B.根据圆的面积为,推测球的体积为. |
C.在数列中,根据,计算出的值,然后猜想的通项公式. |
D.因为平行四边形的对角线互相平分,而菱形是平行四边形,所以菱形的对角线互相平分 |
一个二元码是由0和1组成的数字串,其中称为第k位码元,二元码是通信中常用的码,但在通信过程中有时会发生码元错误(即码元由0变为1,或者由1变为0)
已知某种二元码的码元满足如下校验方程组:,其中运算⊕定义为:.现已知一个这种二元码在通信过程中仅在第k位发生码元错误后变成了1101101,那么利用上述校验方程组可判定k等于( )
A.4 | B.5 | C.6 | D.7 |
下列说法正确的有( )
(1)用反证法证明:“三角形的内角中至少有一个不大于”时的假设是“假设三角形的三个内角都不大于;
(2)分析法是从要证明的结论出发,逐步寻求使结论成立的充要条件;
(3)用数学归纳法证明,从到,左边需要增乘的代数式为2(2k+1);
(4)演绎推理是从特殊到一般的推理,其一般模式是三段论;
A.0个 | B.1个 | C.2个 | D.3个 |
下列表述正确的是( )
①归纳推理是由特殊到一般的推理;
②演绎推理是由一般到特殊的推理;
③类比推理是由特殊到一般的推理;
④分析法是一种间接证明法;
⑤若z∈C,且|z+2﹣2i|=1,则|z﹣2﹣2i|的最小值是3.
A.①②③④ | B.②③④ | C.①②④⑤ | D.①②⑤ |
下面几种推理过程是演绎推理的是( )
A.两条直线平行,同旁内角互补,如果和是两条平行直线的同旁内角,则+= |
B.由平面三角形的性质,推测空间四面体的性质 |
C.某校高三共有10个班,1班有51人,2班有53人,三班有52人,由此推测各班都超过50人 |
D.在数列中,,,计算,由此推测通项 |
下列正确的是( )
A.类比推理是由特殊到一般的推理 |
B.演绎推理是由特殊到一般的推理 |
C.归纳推理是由个别到一般的推理 |
D.合情推理可以作为证明的步骤 |
法国数学家费马观察到,,,都是质数,于是他提出猜想:任何形如N*)的数都是质数,这就是著名的费马猜想.半个世纪之后,善于发现的欧拉发现第5个费马数不是质数,从而推翻了费马猜想,这一案例说明( )
A.归纳推理,结果一定不正确 | B.归纳推理,结果不一定正确 |
C.类比推理,结果一定不正确 | D.类比推理,结果不一定正确 |
“π是无限不循环小数,所以π是无理数”,以上推理( )
A.缺少小前提,小前提是无理数都是无限不循环小数 |
B.缺少大前提,大前提是无理数都是无限不循环小数 |
C.缺少小前提,小前提是无限不循环小数都是无理数 |
D.缺少大前提,大前提是无限不循环小数都是无理数 |
观察下列各式:
1=12,
2+3+4=32,
3+4+5+6+7=52,
4+5+6+7+8+9+10=72,
…,可以得出的一般结论是( )
A.n+(n+1)+(n+2)+…+(3n-2)=n2 |
B.n+(n+1)+(n+2)+…+(3n-2)=(2n-1)2 |
C.n+(n+1)+(n+2)+…+(3n-1)=n2 |
D.n+ (n+1)+(n+2)+…+(3n-1)=(2n-1)2 |
天文学家经研究认为:“地球和火星在太阳系中各方面比较接近,而地球有生命,进而认为火星上也有生命存在”,这是什么推理( )
A.归纳推理 | B.类比推理 | C.演绎推理 | D.反证法 |
试题篮
()